Skip to main content
Log in

Quantification and Prediction of Biomass Yield of Temperate Low-Input High-Diversity Ecosystems

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Little is known about the biomass production and bioenergy potential of low-input high-diversity (LIHD) systems in temperate nonforest conservation areas. In order to assess the potential of the biomass for energetic or other purposes, accurate yield data from LIHD systems are needed. We quantified the biomass yield in a wide range of seminatural systems (grasslands, marshes, tall-herb vegetation, and heathlands). Our results show a considerable variation in annual biomass yield ranging between 0.69 and 6.49 tDM ha−1 year−1. In addition, we provide an accurate method to determine the standing stock of harvestable biomass in the field. We developed four predictive models: one multiple linear regression (MLR) model and three boosted regression tree (BRT) models: (i) a vegetation model with variables that are easy to measure in the field, (ii) a soil model with soil physical and chemical variables, and (iii) a vegsoil model with all available variables. Due to its ability to fit nonlinear response functions and threshold values, the boosted regression tree technique outperformed the classical multiple linear regression. The vegetation model is the preferred model because it combines a good predictive performance (R 2adj = 0.75 and R 2adjCV = 0.51) with a relatively simple application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5(4):1043–1066. doi:10.1007/s12155-012-9208-0

    Article  CAS  Google Scholar 

  2. Bauen A, Berndes G, Junginger M, Londo M, Vuille F (2009) Bioenergy—a sustainable and reliable energy source. A review of status and prospects. IEA Bioenergy

  3. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–1600. doi:10.1126/science.1133306

    Article  CAS  PubMed  Google Scholar 

  4. Headey D, Fan S (2008) Anatomy of a crisis: the causes and consequences of surging food prices. International Food Policy Research Institute (IFPRI)

  5. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240. doi:10.1126/science.1151861

    Article  CAS  PubMed  Google Scholar 

  6. Dauber J, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2(6):289–309. doi:10.1111/j.1757-1707.2010.01058.x

    Article  Google Scholar 

  7. Eggers J, Tröltzsch K, Falcucci A, Maiorano L, Verburg PH, Framstad E, Louette G, Maes D, Nagy S, Ozinga WIM, Delbaere BEN (2009) Is biofuel policy harming biodiversity in Europe? GCB Bioenergy 1(1):18–34. doi:10.1111/j.1757-1707.2009.01002.x

    Article  Google Scholar 

  8. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291. doi:10.1126/science.1208742

    Article  CAS  PubMed  Google Scholar 

  9. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42(15):5791–5794. doi:10.1021/es800052w

    Article  CAS  PubMed  Google Scholar 

  11. Nijsen M, Smeets E, Stehfest E, van Vuuren DP (2012) An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 4(2):130–147. doi:10.1111/j.1757-1707.2011.01121.x

    Article  Google Scholar 

  12. Jungers JM, Fargione JE, Sheaffer CC, Wyse DL, Lehman C (2013) Energy potential of biomass from conservation grasslands in Minnesota, USA. PLoS One 8(4):e61209. doi:10.1371/journal.pone.0061209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gillitzer P, Wyse D, Sheaffer C, Taff S, Lehman C (2013) Biomass production potential of grasslands in the oak savanna region of Minnesota, USA. Bioenergy Res 6(1):131–141. doi:10.1007/s12155-012-9233-z

    Article  CAS  Google Scholar 

  14. Ostermann OP (1998) The need for management of nature conservation sites designated under Natura 2000. J Appl Ecol 35(6):968–973. doi:10.1111/j.1365-2664.1998.tb00016.x

    Article  Google Scholar 

  15. Plieninger T, Hochtl F, Spek T (2006) Traditional land-use and nature conservation in European rural landscapes. Environ Sci Policy 9(4):317–321. doi:10.1016/j.envsci.2006.03.001

    Article  Google Scholar 

  16. Hampicke U (2006) Efficient conservation in Europe’s agricultural countryside: rationale, methods and policy reorientation. Outlook Agric 35(2):97–105. doi:10.5367/000000006777641598

    Article  Google Scholar 

  17. Halada L, Evans D, Romão C, Petersen J-E (2011) Which habitats of European importance depend on agricultural practices? Biodivers Conserv 20(11):2365–2378. doi:10.1007/s10531-011-9989-z

    Article  Google Scholar 

  18. Bignal EM, McCracken DI (2000) The nature conservation value of European traditional farming systems. Environ Rev 8(3):149

    Article  CAS  Google Scholar 

  19. Muller S (2002) Appropriate agricultural management practices required to ensure conservation and biodiversity of environmentally sensitive grassland sites designated under Natura 2000. Agr Ecosyst Environ 89(3):261–266. doi:10.1016/S0167-8809(01)00235-3

    Article  Google Scholar 

  20. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  21. Cop J, Vidrih M, Hacin J (2009) Influence of cutting regime and fertilizer application on the botanical composition, yield and nutritive value of herbage of wet grasslands in Central Europe. Grass Forage Sci 64(4):454–465. doi:10.1111/j.1365-2494.2009.00713.x

    Article  Google Scholar 

  22. Bovolenta S, Spanghero M, Dovier S, Orlandi D, Clementel F (2008) Chemical composition and net energy content of alpine pasture species during the grazing season. Anim Feed Sci Tech 140(1-2):164–177. doi:10.1016/j.anifeedsci.2007.02.002

    Article  CAS  Google Scholar 

  23. Fiems LO, De Boever JL, De Vliegher A, Vanacker JM, De Brabander DL, Carlier L (2004) Agri-environmental grass hay: nutritive value and intake in comparison with hay from intensively managed grassland. Arch Anim Nutr 58(3):233–244

    Article  CAS  PubMed  Google Scholar 

  24. Britton AJ, Marrs RH, Carey PD, Pakeman RJ (2000) Comparison of techniques to increase Calluna vulgaris cover on heathland invaded by grasses in Breckland, south east England. Biol Conserv 95(3):227–232. doi:10.1016/S0006-3207(00)00047-1

    Article  Google Scholar 

  25. Niemeyer M, Niemeyer T, Fottner S, Hardtle W, Mohamed A (2007) Impact of sod-cutting and choppering on nutrient budgets of dry heathlands. Biol Conserv 134(3):344–353. doi:10.1016/j.biocon.2006.07.013

    Article  Google Scholar 

  26. Kahmen S, Poschlod P, Schreiber KF (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104(3):319–328. doi:10.1016/S0006-3207(01)00197-5

    Article  Google Scholar 

  27. Corton J, Bühle L, Wachendorf M, Donnison IS, Fraser MD (2013) Bioenergy as a biodiversity management tool and the potential of a mixed species feedstock for bioenergy production in Wales. Bioresour Technol 129(0):142–149. doi:10.1016/j.biortech.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  28. Sala OE, Austin AT (2000) Methods of estimating aboveground net primary productivity. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 31–43

    Chapter  Google Scholar 

  29. Flombaum P, Sala OE (2007) A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J Arid Environ 69(2):352–358. doi:10.1016/j.jaridenv.2006.09.008

    Article  Google Scholar 

  30. Byrne KM, Lauenroth WK, Adler PB, Byrne CM (2011) Estimating aboveground net primary production in grasslands: a comparison of nondestructive methods. Rangel Ecol Manag 64(5):498–505. doi:10.2111/rem-d-10-00145.1

    Article  Google Scholar 

  31. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  32. Van Steertegem M, Bossuyt M, Brouwers J, De Geest C, Dewolf N, Overloop S, Peeters B, Struyf I, Van Hooste H, Vancraeynest L, Vander Putten E (2012) MIRA Indicator report 2012. VMM

  33. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158(9):2940–2945. doi:10.1016/j.envpol.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  34. AGIV (2001) Soil map of the Flemish Region. Ghent

  35. Van Landuyt W, Hoste I, Vanhecke L, Van den Bremt P, Vercruysse W, De Beer D (2006) Atlas van de Flora van Vlaanderen en het Brussels gewest. Nationale Plantentuin en het Instituut voor Natuur- en Bosonderzoek i.s.m. Flo.Wer vzw,

  36. McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, USA

  37. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  38. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366. doi:10.2307/2963459

    Google Scholar 

  39. Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14(2):63–68. doi:10.1016/S0169-5347(98)01544-4

    Article  PubMed  Google Scholar 

  40. Webb NR (1980) Management and conservation of heathlands—synthesis. Bull D'Ecol 11(3–4):655–658

    Google Scholar 

  41. Tyler GA, Smith KW, Burges DJ (1998) Reedbed management and breeding bitterns Botaurus stellaris in the UK. Biol Conserv 86(2):257–266. doi:10.1016/S0006-3207(97)00174-2

    Article  Google Scholar 

  42. Aertsen W, Kint V, van Orshoven J, Ozkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221(8):1119–1130. doi:10.1016/j.ecolmodel.2010.01.007

    Article  Google Scholar 

  43. Aertsen W, Kint V, De Vos B, Deckers J, Van Orshoven J, Muys B (2012) Predicting forest site productivity in temperate lowland from forest floor, soil and litterfall characteristics using boosted regression trees. Plant Soil 354(1–2):157–172. doi:10.1007/s11104-011-1052-z

    Article  CAS  Google Scholar 

  44. De'ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88(1):243–251. doi:10.1890/0012-9658(2007)88[243:Btfema]2.0.Co;2

    Article  PubMed  Google Scholar 

  45. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  CAS  PubMed  Google Scholar 

  46. R Development Core Team (2012) R: a language and environment for statistical computing, 2153rd edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  47. Ridgeway G (2013) Generalized boosted models: a guide to the gbm package.

  48. Ripley B, Venables B, Hornik K, Gebhardt A, Firth D (2013) Support functions and datasets for Venables and Ripley’s MASS.

  49. Akaike H (1974) A new look at the statistical model identification. Autom Control Trans 19(6):716–723. doi:10.1109/tac.1974.1100705

    Article  Google Scholar 

  50. Araujo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14(6):529–538. doi:10.1111/j.1466-822x.2005.00182.x

    Article  Google Scholar 

  51. Hawkins DM, Basak SC, Mills D (2003) Assessing model fit by cross-validation. J Chem Inf Comput Sci 43(2):579–586. doi:10.1021/Ci025626i

    Article  CAS  PubMed  Google Scholar 

  52. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B 36(2):111–147

    Google Scholar 

  53. Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalized regression analysis for the spatial prediction of forest communities. J Biogeogr 33(10):1729–1749. doi:10.1111/j.1365-2699.2006.01465.x

    Article  Google Scholar 

  54. European Nature Information System (2012) European Environment Agency.

  55. Amthor JS, Baldocchi DD (2001) Terrestrial higher plant respiration and net primary production. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, pp 33–59

  56. Tonn B, Thumm U, Claupein W (2010) Semi-natural grassland biomass for combustion: influence of botanical composition, harvest date and site conditions on fuel composition. Grass Forage Sci 65(4):383–397. doi:10.1111/j.1365-2494.2010.00758.x

    Article  CAS  Google Scholar 

  57. Loomis RS, Connor DJ (1992) Crop Ecology: productivity and management in agricultural systems. Cambridge University Press

  58. Bakker JP (1989) Nature management by grazing and cutting : on the ecological significance of grazing and cutting regimes applied to restore former species-rich grassland communities in the Netherlands. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  59. Bobbink R, Ashmore M, Braum S, Fluckinger W, Van den Wyngaert IJJ (2003) Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In: Achermann B, Bobbink R (eds) Empirical critical loads for nitrogen, Environmental Documentation No. 164. Swiss Agency for Environment, Forest and Landscape SAEFL, Berne

    Google Scholar 

  60. Jenkinson DS, Potts JM, Perry JN, Barnett V, Coleman K, Johnston AE (1994) Trends in herbage yields over the last century on the Rothamsted Long-term Continuous Hay Experiment. J Agric Sci 122(03):365–374. doi:10.1017/S0021859600067290

    Article  Google Scholar 

  61. Martin RC, Astatkie T, Cooper JM, Fredeen AH (2005) A comparison of methods used to determine biomass on naturalized swards. J Agron Crop Sci 191(2):152–160. doi:10.1111/j.1439-037X.2004.00145.x

    Article  Google Scholar 

  62. Egoh B, Rouget M, Reyers B, Knight AT, Cowling RM, van Jaarsveld AS, Welz A (2007) Integrating ecosystem services into conservation assessments: a review. Ecol Econ 63(4):714–721. doi:10.1016/j.ecolecon.2007.04.007

    Article  Google Scholar 

  63. Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, Tilman D, McCoy T, McLeod S, Nelson EJ, Oberhauser KS (2009) Bioenergy and wildlife: threats and opportunities for grassland conservation. Bioscience 59(9):767–777. doi:10.1525/bio.2009.59.9.8

    Article  Google Scholar 

  64. Humbert JY, Ghazoul J, Walter T (2009) Meadow harvesting techniques and their impacts on field fauna. Agric Ecosyst Environ 130(1–2):1–8. doi:10.1016/j.agee.2008.11.014

    Article  Google Scholar 

  65. Perkins AJ, Maggs HE, Wilson JD, Watson A (2013) Delayed mowing increases corn bunting Emberiza calandra nest success in an agri-environment scheme trial. Agric Ecosyst Environ 181:80–89. doi:10.1016/j.agee.2013.09.010

    Article  Google Scholar 

  66. Walsh M, de la Torre Ugarte D, Shapouri H, Slinsky S (2003) Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environ Resour Econ 24(4):313–333. doi:10.1023/a:1023625519092

    Article  Google Scholar 

  67. de Wit M, Junginger M, Lensink S, Londo M, Faaij A (2010) Competition between biofuels: modeling technological learning and cost reductions over time. Biomass Bioenergy 34(2):203–217. doi:10.1016/j.biombioe.2009.07.012

    Article  Google Scholar 

  68. De Meyer A, Cattrysse D, Rasinmäki J, Van Orshoven J (2014). Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews 31: 657–670. doi:10.1016/j.rser.2013.12.036

Download references

Acknowledgments

We would like to thank Natuurpunt vzw and the Agency of Nature and Forestry (ANB) of the Flemish Government for the access to the nature reserves and Andreas Demey for the permission to sample his permanent plots. The comments and suggestions of the anonymous reviewers were greatly acknowledged. This research was funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koenraad Van Meerbeek.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 12 kb)

Online Resource 2

(PDF 75 kb)

Online Resource 3

(ZIP 16.8 mb)

Online Resource 4

(PDF 50 kb)

Online Resource 5

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Meerbeek, K., Van Beek, J., Bellings, L. et al. Quantification and Prediction of Biomass Yield of Temperate Low-Input High-Diversity Ecosystems. Bioenerg. Res. 7, 1120–1130 (2014). https://doi.org/10.1007/s12155-014-9444-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9444-6

Keywords

Navigation