Skip to main content

Advertisement

Log in

Comparative Cellular Analysis of Pathogenic Fungi with a Disease Incidence in Brachypodium distachyon and Miscanthus x giganteus

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Based on a growing demand on renewable energy, fast growing perennial grasses have been identified as energy crops with a high capacity in sustainable biomass production. Among these grasses, the giant reed Miscanthus x giganteus delivers one of the highest biomass yields. Despite its potential for an extended cultivation, only little is known about putative fungal pathogens that might cause biomass losses. Molecular targets that are related to fungal resistance have not been identified because cellular and molecular tools have not been established in this energy crop. Therefore, our study was aimed to evaluate a method to compare the penetration process of fungal plant pathogens in the model grass Brachypodium distachyon and M. giganteus. In a screening with 13 different fungal species on detached leaves, we identified four filamentous fungi that infected both B. distachyon and M. giganteus and have not been previously described as M. giganteus pathogens. Spray inoculations with these four fungi on intact M. giganteus leaves of whole plants confirmed their pathogenicity. Microscopic analysis of the fungal infections and the hyphal propagation within the leaf tissue revealed that the four newly identified fungi used very similar strategies for penetration and colonization in B. distachyon and M. giganteus. This suggests that B. distachyon could be suitable to establish model pathosystems for these fungal pathogens that colonize M. giganteus. The already existing genetic tools for B. distachyon might improve the identification of defense-related targets and mechanisms supporting fungal resistance in M. giganteus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples. Plos One 3(8):e2932. doi:10.1371/journal.pone.0002932

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jernelov A (2010) The threats from oil spills: now, then, and in the future. Ambio 39(5–6):353–366

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sojinu OS, Wang JZ, Sonibare OO, Zeng EY (2010) Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. J Hazard Mater 174(1–3):641–647. doi:10.1016/j.jhazmat.2009.09.099

    Article  CAS  PubMed  Google Scholar 

  4. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technol 101(6):1570–1580. doi:10.1016/j.biortech.2009.11.046

    Article  CAS  Google Scholar 

  5. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792. doi:10.1126/science.1189268

    Article  CAS  PubMed  Google Scholar 

  6. Dale VH, Kline KL, Wright LL, Perlack RD, Downing M, Graham RL (2011) Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Ecol Appl 21(4):1039–1054

    Article  PubMed  Google Scholar 

  7. Hohenstein WG, Wright LL (1994) Biomass energy production in the United States: an overview. Biomass Bioenerg 6(3):161–173. doi:10.1016/0961-9534(94)90073-6

    Article  Google Scholar 

  8. Hughes JK, Lloyd AJ, Huntingford C, Finch JW, Harding RJ (2010) The impact of extensive planting of Miscanthus as an energy crop on future CO2 atmospheric concentrations. Glob Change Biol Bioenerg 2(2):79–88. doi:10.1111/j.1757-1707.2010.01042.x

    Article  CAS  Google Scholar 

  9. Roth AM, Sample DW, Ribic CA, Paine L, Undersander DJ, Bartelt GA (2005) Grassland bird response to harvesting switchgrass as a biomass energy crop. Biomass Bioenerg 28(5):490–498. doi:10.1016/j.biombioe.2004.11.001

    Article  Google Scholar 

  10. van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107. doi:10.3389/fpls.2013.00107

    PubMed Central  PubMed  Google Scholar 

  11. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: How does Miscanthus do it? Plant Physiol 150(4):2104–2115. doi:10.1104/pp.109.139162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14(9):2000–2014. doi:10.1111/j.1365-2486.2008.01662.x

    Article  Google Scholar 

  13. Hulle Sv, Waes Cv, Vliegher Ad, Baert J, Muylle H (2012) Comparison of dry matter yield of lignocellulosic perennial energy crops in a long-term Belgian field experiment. In: Grassland Science in Europe, Volume 17, 2012 Polskie Towarzystwo Łakarskie (Polish Grassland Society), pp 499–501

  14. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg 19(4):209–227. doi:10.1016/s0961-9534(00)00032-5

    Article  CAS  Google Scholar 

  15. Lewandowski I (1998) Propagation method as an important factor in the growth and development of Miscanthus x giganteus. Ind Crop Prod 8:229–245

    Article  Google Scholar 

  16. Ullstrup AJ (1972) The impacts of the Southern corn leaf blight epidemics of 1970-1971. Annu Rev Phytopathol 10(1):37–50. doi:10.1146/annurev.py.10.090172.000345

    Article  Google Scholar 

  17. Agindotan BO, Ahonsi MO, Gray ME, Bradley CA (2010) Potential viral threats to Miscanthus x giganteus and switchgrass production for bioenergy in the United States. Phytopathol 100:S3

    Google Scholar 

  18. Agindotan BO, Okanu N, Oladeinde A, Voigt T, Long S, Gray M, Bradley C (2013) Detection of Switchgrass mosaic virus in Miscanthus and other grasses. Can J Plant Pathol 35(1):81–86

    Article  CAS  Google Scholar 

  19. Christian DG, Lamptey JNL, Forde SMD, Plumb RT (1994) First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur J Plant Pathol 100(2):167–170. doi:10.1007/bf01876249

    Article  Google Scholar 

  20. Pusz W, Pląkaskowska E (2010) Stagonospora tainanensis—new pathogen of Miscanthus (Miscanthus x giganteus) in Poland. Phytopathologia 57:39–43

    Google Scholar 

  21. Oliver RP, Friesen TL, Faris JD, Solomon PS (2012) Stagonospora nodorum: from pathology to genomics and host resistance. Annu Rev Phytopathol 50(1):23–43. doi:10.1146/annurev-phyto-081211-173019

    Article  CAS  PubMed  Google Scholar 

  22. Beccari G, Covarelli L, Balmas V, Tosi L (2010) First report of Miscanthus × giganteus rhizome rot caused by Fusarium avenaceum, Fusarium oxysporum and Mucor hiemalis. Australas Plant Dis Notes 5(1):28–29. doi:10.1071/dn10011

    Article  Google Scholar 

  23. Scauflaire J, Gourgue M, Foucart G, Renard F, Vandeputte F, Munaut F (2013) Fusarium miscanthi and other Fusarium species as causal agents of Miscanthus × giganteus rhizome rot. Eur J Plant Pathol 137(1):1–3. doi:10.1007/s10658-013-0220-9

    Article  Google Scholar 

  24. Thinggaard K (1997) Study of the role of Fusarium in the field establishment problem of Miscanthus. Acta Agr Scand B-S P 47:238–241

    Google Scholar 

  25. Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13(4):399–413. doi:10.1111/j.1364-3703.2011.00762.x

    Article  CAS  PubMed  Google Scholar 

  26. Viswanathan R, Poongothai M, Malathi P (2011) Pathogenic and molecular confirmation of Fusarium sacchari causing wilt in sugarcane. Sugar Tech 13:68–76

    Article  CAS  Google Scholar 

  27. Ahonsi MO, Agindotan BO, Williams DW, Arundale R, Gray ME, Voigt TB, Bradley CA (2010) First report of Pithomyces chartarum causing a leaf blight of Miscanthus × giganteus in Kentucky. Plant Dis 94(4):480–480. doi:10.1094/pdis-94-4-0480c

    Article  Google Scholar 

  28. Ahonsi MO, Ames KA, Gray ME, Bradley CA (2013) Biomass reducing potential and prospective fungicide control of a new leaf blight of Miscanthus × giganteus caused by Leptosphaerulina chartarum. Bioenerg Res 6(2):737–745. doi:10.1007/s12155-012-9293-0

    Article  CAS  Google Scholar 

  29. Talbot NJ (1995) Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol 3(1):9–16

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Ellwood SR, Oliver RP, Friesen TL (2011) Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 12(1):1–19. doi:10.1111/j.1364-3703.2010.00649.x

    Article  PubMed  Google Scholar 

  31. Bakonyi J, Aponyi I, Fischl G (1998) Diseases caused by Bipolaris sorokiniana and Drechslera tritici-repentis in Hungary. In: Proceedings of an International Workshop, El Batan, Tex. (Mexico), 9-14 Feb 1997, 1998. CIMMYT/UCL/BADC

  32. Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel K-H (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathol 91(2):127–133. doi:10.1094/phyto.2001.91.2.127

    Article  CAS  Google Scholar 

  33. Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K-H (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3(4):185–195. doi:10.1046/j.1364-3703.2002.00120.x

    Article  CAS  PubMed  Google Scholar 

  34. Saari EE (1998) Leaf blight diseases and associated soilborne fungal pathogens of wheat in south and southeast Asia. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Helminthosporium blights of wheat: spot blotch and tan spot. Mexico. CIMMYT, Mexico, D.F, pp 37–51

    Google Scholar 

  35. Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Divers 53(1):1–221. doi:10.1007/s13225-011-0117-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Czerniawska B, Adamska I (2009) Parasitic fungi on sedges. Prog Plant Protect 49:187–190

    Google Scholar 

  37. Peraldi A, Beccari G, Steed A, Nicholson P (2011) Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol 11 (1). doi:10.1186/1471-2229-11-100

  38. Routledge APM, Shelley G, Smith JV, Talbot NJ, Draper J, Mur LAJ (2004) Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol Plant Pathol 5(4):253–265. doi:10.1111/j.1364-3703.2004.00224.x

    Article  CAS  PubMed  Google Scholar 

  39. Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127(4):1539–1555. doi:10.1104/pp. 010196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4(5):638–649. doi:10.1038/nprot.2009.30

    Article  CAS  PubMed  Google Scholar 

  41. International Brachypodium I (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768. doi:10.1038/nature08747

    Article  Google Scholar 

  42. Huo N, Gu YQ, Lazo GR, Vogel JP, Coleman-Derr D, Luo MC, Thilmony R, Garvin DF, Anderson OD (2006) Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome 49(9):1099–1108. doi:10.1139/g06-087

    Article  CAS  PubMed  Google Scholar 

  43. Solomon PS, Lee RC, Wilson TJG, Oliver RP (2004) Pathogenicity of Stagonospora nodorum requires malate synthase. Mol Microbiol 53(4):1065–1073. doi:10.1111/j.1365-2958.2004.04178.x

    Article  CAS  PubMed  Google Scholar 

  44. Nirenberg HI (1981) A simplified method for identifying Fusarium spp. occurring on wheat. Can J Bot 59(9):1599–1609. doi:10.1139/b81-217

    Article  Google Scholar 

  45. Parker D, Beckmann M, Enot DP, Overy DP, Rios ZC, Gilbert M, Talbot N, Draper J (2008) Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat Protoc 3(3):435–445. doi:10.1038/nprot.2007.499

    Article  CAS  PubMed  Google Scholar 

  46. Leach J, Lang BR, Yoder OC (1982) Methods for selection of mutants and in vitro culture of Cochliobolus heterostrophus. J Gen Microbiol 128(8):1719–1729. doi:10.1099/00221287-128-8-1719

    Google Scholar 

  47. Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105:129–133

    Article  Google Scholar 

  48. Mirelman D, Galun E, Sharon N, Lotan R (1975) Inhibition of fungal growth by wheat germ agglutinin. Nature 256(5516):414–416

    Article  CAS  PubMed  Google Scholar 

  49. Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Change Biol 19(7):1985–2000. doi:10.1111/gcb.12205

    Article  Google Scholar 

  50. Siebold M, von Tiedemann A (2013) Effects of experimental warming on fungal disease progress in oilseed rape. Glob Change Biol 19(6):1736–1747. doi:10.1111/gcb.12180

    Article  Google Scholar 

  51. Chassot C, Buchala A, Schoonbeek HJ, Metraux JP, Lamotte O (2008) Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J 55(4):555–567. doi:10.1111/j.1365-313X.2008.03540.x

    Article  CAS  PubMed  Google Scholar 

  52. Krishnaveni S, Muthukrishnan S, Linag GH, Wilde G, Manickam A (1999) Induction of chitinases and β-1,3-glucanases in resistant and susceptible cultivars of sorghum in response to insect attack, fungal infection and wounding. Plant Sci 144(1):9–16. doi:10.1016/S0168-9452(99)00049-7

    Article  CAS  Google Scholar 

  53. Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 96(11):6553–6557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29(3):257–268

    Article  CAS  PubMed  Google Scholar 

  55. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11(6):1187–1194. doi:10.1046/j.1365-313X.1997.11061187.x

    Article  CAS  Google Scholar 

  56. Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221(1–2):137–143. doi:10.1007/s00709-002-0064-1

    Article  CAS  PubMed  Google Scholar 

  57. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10(13):751–757

    Article  CAS  PubMed  Google Scholar 

  58. Routledge APM, Shelley G, Smith JV, Talbot NJ, Draper J, Mur LAJ (2004) Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol Plant Pathol 5(4):253–265. doi:10.1111/j.1364-3703.2004.00224.x

    Article  CAS  PubMed  Google Scholar 

  59. Han Q, Huang L, Buchenauer H, Wang C, Kang Z (2010) Cytological study of wheat spike infection by Bipolaris sorokiniana. J Phytopathol 158:22–29

    Article  Google Scholar 

  60. Solomon PS, Wilson TJG, Rybak K, Parker K, Lowe RGT, Oliver RP (2006) Structural characterisation of the interaction between Triticum aestivum and the Dothideomycete Pathogen Stagonospora nodorum. Eur J Plant Pathol 114(3):275–282. doi:10.1007/s10658-005-5768-6

    Article  Google Scholar 

  61. Horwitz BA, Condon BJ, Turgeon BG (2013) Cochliobolus heterostrophus: a dothideomycete pathogen of maize. In: Horwitz BA, Mukherjee PK, Mukherjee M, Kubicek CP (eds) Genomics of soil- and plant-associated fungi, 36th edn. Springer, Berlin Heidelberg, pp 213–228

    Chapter  Google Scholar 

  62. Leach J, Lang BR, Yoder OC (1982) Methods for selection of mutants and in vitro culture of Cochliobolus heterostrophus. J Gen Microbiol 128(8):1719–1729. doi:10.1099/00221287-128-8-1719

    Google Scholar 

  63. Jørgensen U (2010) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3(1–2):24–30. doi:10.1016/j.cosust.2010.12.003

    Google Scholar 

  64. Spencer JL, Raghu S (2009) Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize. Plos ONE 4(12):e8336. doi:10.1371/journal.pone.0008336

    Article  PubMed Central  PubMed  Google Scholar 

  65. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10:69–74. doi:10.1890/110003

    Article  Google Scholar 

  66. Pandey SC, Shukla TN (1979) Host range studies of six Helminthosporium spp. causing leaf spot diseases of sorghum. Indian J Mycol Plant Pathol 8(2):207–208

    Google Scholar 

  67. Dinoor A (1974) Role of wild and cultivated plants in the epidemiology of plant diseases in Israel. Annu Rev Phytopathol 12:413–436

    Article  Google Scholar 

  68. Cunnell GJ (1961) Stagonospora macropycnidia sp.nov. T Brit Mycol Soc 44(1):87–90. doi:10.1016/s0007-1536(61)80010-7

    Article  Google Scholar 

  69. Almgren I, Gustafsson M, Fält A-S, Lindgren H, Liljeroth E (1999) Interaction between root and leaf disease development in barley cultivars after inoculation with different isolates of Bipolaris sorokiniana. J Phytopathol 147:331–337

    Article  Google Scholar 

  70. Boenisch MJ, Schäfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11 (1). doi:10.1186/1471-2229-11-110

  71. Emmett RW, Parbery DG (1975) Appressoria. Annu Rev Phytopathol 13(1):147–165. doi:10.1146/annurev.py.13.090175.001051

    Article  Google Scholar 

  72. O’Reilly P, Downes MJ (1986) Form of survival of Septoria nodorum on symptomless winter wheat. T Brit Mycol Soc 86:381–385

    Article  Google Scholar 

  73. Beckman PM, Payne GA (1982) External growth, penetration, and development of Cercospora zeae-maydis in corn leaves. Phytopathol 72:810–815

    Article  Google Scholar 

  74. Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386. doi:10.1146/annurev.phyto.34.1.367

    Article  CAS  PubMed  Google Scholar 

  75. Garvin DF, Gu YQ, Hasterok R, Hazen SP, Jenkins G, Mockler TC, Mur LAJ, Vogel JP (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci 48:69–84. doi:10.2135/cropsci2007.06.0332tpg

    Article  Google Scholar 

  76. Weissmann S, Brutnell TP (2012) Engineering C4 photosynthetic regulatory networks. Curr Opin Biotechnol 23(3):298–304. doi:10.1016/j.copbio.2011.12.018

    Article  CAS  PubMed  Google Scholar 

  77. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of dna sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89(2):279–286. doi:10.3732/ajb.89.2.279

    Article  CAS  PubMed  Google Scholar 

  78. Zhao H, Yu J, You FM, Luo M, Peng J (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J Integr Plant Biol 53(3):232–245. doi:10.1111/j.1744-7909.2010.01026.x

    Article  CAS  PubMed  Google Scholar 

  79. Zhao H, Wang B, He J, Yang J, Pan L, Sun D, Peng J (2013) Genetic diversity and population structure of Miscanthus sinensis germplasm in China. Plos One 8(10):e75672. doi:10.1371/journal.pone.0075672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. O'Neill NR, Farr DF (1996) Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp. Plant Dis 80:980–987

    Article  Google Scholar 

  81. Miedaner T, Reinbrecht C, Schilling AG (2000) Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. J Plant Dis Prot 107:124–134

    CAS  Google Scholar 

  82. Steffensen BJ, Webster RK (1992) Pathotype diversity of Pyrenophora teres f. teres on barley. Phytopathol 82:170–177

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (grant no. FKZ 0315521A, to C.A.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Voigt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falter, C., Voigt, C.A. Comparative Cellular Analysis of Pathogenic Fungi with a Disease Incidence in Brachypodium distachyon and Miscanthus x giganteus . Bioenerg. Res. 7, 958–973 (2014). https://doi.org/10.1007/s12155-014-9439-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9439-3

Keywords