Skip to main content

Advertisement

Log in

Catalytic Pyrolysis of Raw and Thermally Treated Cellulose Using Different Acidic Zeolites

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Fast pyrolysis of biomass using zeolite catalyst has shown to be effective in improving aromatic production. This study focuses on aromatic production through catalytic pyrolysis of major biomass constituent i.e., cellulose. Furthermore, cellulose was torrefied to understand torrefaction’s effect on pyrolysis products. The influence of SiO2/Al2O3 ratios of zeolite (ZSM-5) catalyst on aromatic production during pyrolysis of raw and torrefied cellulose was investigated. Results showed that the catalyst acidity played a pivotal role in eliminating anhydro sugars and other oxygenated compounds while producing more aromatics. The maximum aromatic yield (~25 wt%) was obtained when ZSM-5 with the highest acidity (SiO2/Al2O3 = 30) was used, while the lowest yield (7.99 wt%) was obtained when the least acidic catalyst was used (SiO2/Al2O3 = 280) for raw cellulose pyrolysis. Torrefaction process showed to have positive effect on the aromatic production from pyrolysis. There were no aromatics produced from pyrolysis of raw cellulose in the absence of catalyst, whereas significant amount of aromatic compounds were produced from both catalytic and noncatalytic pyrolyses of torrefied cellulose. The aromatic hydrocarbons produced from catalytic pyrolysis of torrefied cellulose were 5 % more than those produced from raw cellulose at the highest temperature and catalyst acidity (SiO2/Al2O3 = 30).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. EIA (2013) Annual Energy Outlook

  2. Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51(1–2):3–22. doi:10.1016/S0165-2370(99)00005-4

    Article  CAS  Google Scholar 

  3. Lu Q, Li W-Z, Zhu X-F (2009) Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag 50(5):1376–1383. doi:10.1016/j.enconman.2009.01.001

    Article  CAS  Google Scholar 

  4. Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384. doi:10.1016/S0961-9534(00)00049-0

    Article  Google Scholar 

  5. Sharma RK, Bakhshi NN (1993) Catalytic upgrading of pyrolysis oil. Energy Fuel 7(2):306–314. doi:10.1021/ef00038a022

    Article  CAS  Google Scholar 

  6. Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process Technol 45(3):185–202. doi:10.1016/0378-3820(95)00040-E

    Article  CAS  Google Scholar 

  7. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48(1):87–92. doi:10.1016/j.enconman.2006.05.010

    Article  CAS  Google Scholar 

  8. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 2. Analysis of products. J Anal Appl Pyrol 77(1):35–40. doi:10.1016/j.jaap.2006.01.001

    Article  CAS  Google Scholar 

  9. Tjeerdsma B, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur J Wood Wood Prod 56(3):149–153. doi:10.1007/s001070050287

    Article  CAS  Google Scholar 

  10. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748–3762. doi:10.1016/j.biombioe.2011.06.023

    Google Scholar 

  11. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253. doi:10.1016/j.biortech.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  12. Zwart RWR, Boerrigter H, van der Drift A (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer−Tropsch products. Energy Fuel 20(5):2192–2197. doi:10.1021/ef060089f

    Article  CAS  Google Scholar 

  13. Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817. doi:10.1016/j.fuel.2009.05.001

    Article  CAS  Google Scholar 

  14. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889. doi:10.1021/ef0502397

    Article  CAS  Google Scholar 

  15. Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280. doi:10.1002/app.1979.070231112

    Article  CAS  Google Scholar 

  16. Carlson TR, Jae J, Lin Y-C, Tompsett GA, Huber GW (2010) Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal 270(1):110–124. doi:10.1016/j.jcat.2009.12.013

    Article  CAS  Google Scholar 

  17. Antal MJ Jr, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34(3):703–717. doi:10.1021/ie00042a001

    Article  CAS  Google Scholar 

  18. Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75(8):987–998. doi:10.1016/0016-2361(96)00030-0

    Article  CAS  Google Scholar 

  19. Piskorz J, Radlein D, Scott DS (1986) On the mechanism of the rapid pyrolysis of cellulose. J Anal Appl Pyrolysis 9(2):121–137. doi:10.1016/0165-2370(86)85003-3

    Article  CAS  Google Scholar 

  20. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. doi:10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  21. Liaw S-S, Zhou S, Wu H, Garcia-Perez M (2013) Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel 103:672–682. doi:10.1016/j.fuel.2012.08.016

    Article  CAS  Google Scholar 

  22. Park J, Meng J, Lim KH, Rojas OJ, Park S (2013) Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrolysis 100:199–206. doi:10.1016/j.jaap.2012.12.024

    Article  CAS  Google Scholar 

  23. Via BK, Adhikari S, Taylor S (2013) Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy. Bioresour Technol 133:1–8. doi:10.1016/j.biortech.2013.01.108

    Article  CAS  PubMed  Google Scholar 

  24. Soares S, Ricardo NMPS, Jones S, Heatley F (2001) High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR. Eur Polym J 37(4):737–745. doi:10.1016/S0014-3057(00)00181-6

    Article  CAS  Google Scholar 

  25. Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92(1):224–232. doi:10.1016/j.jaap.2011.06.001

    Article  CAS  Google Scholar 

  26. Carlson T, Tompsett G, Conner W, Huber G (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252. doi:10.1007/s11244-008-9160-6

    Article  CAS  Google Scholar 

  27. Lu Q, Yang X-c, Dong C-q, Zhang Z-f, Zhang X-m, Zhu X-f (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical py-GC/MS study. J Anal Appl Pyrolysis 92(2):430–438. doi:10.1016/j.jaap.2011.08.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Southeastern Sun Grant and National Science Foundation (NSF-CBET-1333372) for funding this study. However, only the authors are responsible for any remaining errors in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Adhikari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, V., Adhikari, S., Chattanathan, S.A. et al. Catalytic Pyrolysis of Raw and Thermally Treated Cellulose Using Different Acidic Zeolites. Bioenerg. Res. 7, 867–875 (2014). https://doi.org/10.1007/s12155-014-9426-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9426-8

Keywords