Abstract
Fast pyrolysis of biomass using zeolite catalyst has shown to be effective in improving aromatic production. This study focuses on aromatic production through catalytic pyrolysis of major biomass constituent i.e., cellulose. Furthermore, cellulose was torrefied to understand torrefaction’s effect on pyrolysis products. The influence of SiO2/Al2O3 ratios of zeolite (ZSM-5) catalyst on aromatic production during pyrolysis of raw and torrefied cellulose was investigated. Results showed that the catalyst acidity played a pivotal role in eliminating anhydro sugars and other oxygenated compounds while producing more aromatics. The maximum aromatic yield (~25 wt%) was obtained when ZSM-5 with the highest acidity (SiO2/Al2O3 = 30) was used, while the lowest yield (7.99 wt%) was obtained when the least acidic catalyst was used (SiO2/Al2O3 = 280) for raw cellulose pyrolysis. Torrefaction process showed to have positive effect on the aromatic production from pyrolysis. There were no aromatics produced from pyrolysis of raw cellulose in the absence of catalyst, whereas significant amount of aromatic compounds were produced from both catalytic and noncatalytic pyrolyses of torrefied cellulose. The aromatic hydrocarbons produced from catalytic pyrolysis of torrefied cellulose were 5 % more than those produced from raw cellulose at the highest temperature and catalyst acidity (SiO2/Al2O3 = 30).









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
EIA (2013) Annual Energy Outlook
Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51(1–2):3–22. doi:10.1016/S0165-2370(99)00005-4
Lu Q, Li W-Z, Zhu X-F (2009) Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag 50(5):1376–1383. doi:10.1016/j.enconman.2009.01.001
Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384. doi:10.1016/S0961-9534(00)00049-0
Sharma RK, Bakhshi NN (1993) Catalytic upgrading of pyrolysis oil. Energy Fuel 7(2):306–314. doi:10.1021/ef00038a022
Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process Technol 45(3):185–202. doi:10.1016/0378-3820(95)00040-E
Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48(1):87–92. doi:10.1016/j.enconman.2006.05.010
Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 2. Analysis of products. J Anal Appl Pyrol 77(1):35–40. doi:10.1016/j.jaap.2006.01.001
Tjeerdsma B, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur J Wood Wood Prod 56(3):149–153. doi:10.1007/s001070050287
van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748–3762. doi:10.1016/j.biombioe.2011.06.023
Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253. doi:10.1016/j.biortech.2010.08.028
Zwart RWR, Boerrigter H, van der Drift A (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer−Tropsch products. Energy Fuel 20(5):2192–2197. doi:10.1021/ef060089f
Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817. doi:10.1016/j.fuel.2009.05.001
Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889. doi:10.1021/ef0502397
Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280. doi:10.1002/app.1979.070231112
Carlson TR, Jae J, Lin Y-C, Tompsett GA, Huber GW (2010) Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal 270(1):110–124. doi:10.1016/j.jcat.2009.12.013
Antal MJ Jr, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34(3):703–717. doi:10.1021/ie00042a001
Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75(8):987–998. doi:10.1016/0016-2361(96)00030-0
Piskorz J, Radlein D, Scott DS (1986) On the mechanism of the rapid pyrolysis of cellulose. J Anal Appl Pyrolysis 9(2):121–137. doi:10.1016/0165-2370(86)85003-3
Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. doi:10.1016/j.fuel.2006.12.013
Liaw S-S, Zhou S, Wu H, Garcia-Perez M (2013) Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel 103:672–682. doi:10.1016/j.fuel.2012.08.016
Park J, Meng J, Lim KH, Rojas OJ, Park S (2013) Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrolysis 100:199–206. doi:10.1016/j.jaap.2012.12.024
Via BK, Adhikari S, Taylor S (2013) Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy. Bioresour Technol 133:1–8. doi:10.1016/j.biortech.2013.01.108
Soares S, Ricardo NMPS, Jones S, Heatley F (2001) High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR. Eur Polym J 37(4):737–745. doi:10.1016/S0014-3057(00)00181-6
Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92(1):224–232. doi:10.1016/j.jaap.2011.06.001
Carlson T, Tompsett G, Conner W, Huber G (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252. doi:10.1007/s11244-008-9160-6
Lu Q, Yang X-c, Dong C-q, Zhang Z-f, Zhang X-m, Zhu X-f (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical py-GC/MS study. J Anal Appl Pyrolysis 92(2):430–438. doi:10.1016/j.jaap.2011.08.006
Acknowledgments
We acknowledge the Southeastern Sun Grant and National Science Foundation (NSF-CBET-1333372) for funding this study. However, only the authors are responsible for any remaining errors in this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Srinivasan, V., Adhikari, S., Chattanathan, S.A. et al. Catalytic Pyrolysis of Raw and Thermally Treated Cellulose Using Different Acidic Zeolites. Bioenerg. Res. 7, 867–875 (2014). https://doi.org/10.1007/s12155-014-9426-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12155-014-9426-8


