BioEnergy Research

, Volume 7, Issue 3, pp 885–898 | Cite as

Establishment and Short-term Productivity of Annual and Perennial Bioenergy Crops Across a Landscape Gradient

  • Danielle M. Wilson
  • Emily A. Heaton
  • Lisa A. Schulte
  • Theodore P. Gunther
  • Monika E. Shea
  • Richard B. Hall
  • William Landon Headlee
  • Kenneth J. Moore
  • Nicholas N. Boersma
Article

Abstract

Bioenergy crops may help achieve multiple energy, economic, and environmental objectives in the US Midwest, but a portfolio of crops must first be developed and tested in comparison to the current standard, maize (Zea mays L.). The nascent, but long-term and ongoing Landscape Biomass Project in Boone County, Iowa, USA examines five cropping systems including continuous maize, a modified maize–soy [Glycine max (L.) Merr.] rotation, nurse cropped maize–switchgrass (Panicum virgatum L.), double-cropped triticale (Triticosecale × Whit.)/sorghum (Sorghum bicolor (L.) Moench), and intercropped triticale–aspen (Crandon [Populus alba × Populus grandidentata]) over an elevation gradient. Here, we report perennial establishment and crop productivity across five landscape positions during the first 4 years (2009–2012) of this experiment. Perennials (switchgrass and aspen) established successfully across the gradient with minimal effect of landscape position. Continuous maize had the highest biomass yields both within and over growing seasons, but they declined over time. In comparison, the diversified and perennial systems had lower, but stable or increasing yields over time, despite extreme weather conditions. Landscape position did not consistently influence biomass yield; its effect depended on year and cropping system. Cropping system productivity was generally consistent across the landscape within a given year with greater variability between years. Findings help explain why landscape is often disregarded in Midwestern crop management: it does not seem to substantially drive crop, and thus economic, performance in the short term. Conversely, related Landscape Biomass studies find landscape influences important ecosystem functions (e.g., soil carbon storage) and should be an integral management consideration.

Keywords

Biofuels Biomass yield Hybrid aspen Landscape Biomass Project Short-rotation woody crops Sorghum Switchgrass 

Supplementary material

12155_2014_9409_MOESM1_ESM.docx (23 kb)
Online Resource 1(DOCX 22 kb)
12155_2014_9409_MOESM2_ESM.docx (17 kb)
Online Resource 2(DOCX 17 kb)
12155_2014_9409_MOESM3_ESM.docx (17 kb)
Online Resource 3(DOCX 17 kb)
12155_2014_9409_MOESM4_ESM.docx (17 kb)
Online Resource 4(DOCX 17 kb)
12155_2014_9409_MOESM5_ESM.docx (17 kb)
Online Resource 5(DOCX 17 kb)
12155_2014_9409_MOESM6_ESM.docx (25 kb)
Online Resource 6(DOCX 24 kb)

References

  1. 1.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  2. 2.
    Heaton EA, Schulte LA, Berti M, Langeveld H, Zegada-Lizarazu W, Parrish D, Monti A (2013) Managing a second-generation crop portfolio through sustainable intensification: examples from the USA and the EU. Biofpr. doi:10.1002/bbb.1429 Google Scholar
  3. 3.
    Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels: the food, energy, and environment trilemma. Science 325:270–271. doi:10.1126/science.1177970 PubMedCrossRefGoogle Scholar
  4. 4.
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772 PubMedCrossRefGoogle Scholar
  5. 5.
    Schulte LA, Liebman M, Asbjornsen H, Crow TR (2006) Agroecosystem restoration through strategic integration of perennials. J Soil Water Conserv 61:164A–169AGoogle Scholar
  6. 6.
    NASS (2013) Statistics by Subject: Corn. National Agriculture Statistics Service, U.S. Department of Agriculture. http://www.nass.usda.gov/Quick_Stats/. Accessed 29 Aug 2013
  7. 7.
    DuPont (2013) Nevada site cellulosic ethanol facility. http://biofuels.dupont.com/cellulosic-ethanol/nevada-site-ce-facility/. Accessed 14 June 2013
  8. 8.
    Poet (2012) Ongoing research supports biomass harvesting for Project Liberty. http://www.poet.com/pr/ongoing-research-supports-biomass-harvesting-for-project-liberty. Accessed 13 Feb 2013
  9. 9.
    Duffy MD (2011) Continuous corn verses corn/soybeans: do the relative prices change the profit comparison? Iowa State University Extension and Outreach. http://www.extension.iastate.edu/agdm/articles/duffy/DuffyDec11.html. Accessed 29 Aug 2013
  10. 10.
    Wright CK, Wimberly MC (2013) Recent land use change in the Western Corn Belt threatens grasslands and wetlands. PNAS 110:4134–4139. doi:10.1073/pnas.1215404110 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gentry LF, Ruffo ML, Below FE (2013) Identifying factors controlling the continuous corn yield penalty. Agron J 105:295–303. doi:10.2134/agronj2012.0246 CrossRefGoogle Scholar
  12. 12.
    Mannat RK, Hallam A, Schulte LA, Heaton EA, Gunther T, Hall RB, Moore KJ (2013) Farm-scale costs and returns for second-generation bioenergy cropping systems in the U.S. Corn Belt. Environ Res Lett 8, 035037CrossRefGoogle Scholar
  13. 13.
    Fouli Y, Duiker SW, Fritton DD, Hall MH, Watson JE, Johnson DH (2012) Double cropping effects on forage yield and the field water balance. Agric Water Manag 115:104–117. doi:10.1016/j.agwat.2012.08.014 CrossRefGoogle Scholar
  14. 14.
    Munkholm LJ, Heck RJ, Deen B (2013) Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res 127:85–91. doi:10.1016/j.still.2012.02.007 CrossRefGoogle Scholar
  15. 15.
    Wright L, Turhollow A (2010) Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass Bioenergy 34:851–868. doi:10.1016/j.biombioe.2010.01.030 CrossRefGoogle Scholar
  16. 16.
    Wilson DM, Dalluge DL, Rover M, Heaton EA, Brown RC (2013) Crop management impacts biofuel quality: influence of switchgrass harvest time on yield, nitrogen and ash of fast pyrolysis products. BioEnergy Res 6:103–113. doi:10.1007/s12155-012-9240-0 CrossRefGoogle Scholar
  17. 17.
    Wilson DM, Heaton EA, Liebman M, Moore KJ (2013) Intraseasonal changes in switchgrass nitrogen distribution compared with corn. Agron J 105:285–294. doi:10.2134/agronj2012.0233 CrossRefGoogle Scholar
  18. 18.
    Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JJT, Rasnake M, Reynolds JH (2006) Switchgrass production for the upper southeastern USA: influence of cultivar and cutting frequency on biomass yields. Biomass Bioenergy 30:207–213CrossRefGoogle Scholar
  19. 19.
    Casler MD, Boe AR (2003) Cultivar × environment interactions in switchgrass. Crop Sci 43:2226–2233CrossRefGoogle Scholar
  20. 20.
    Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season C4 grasses. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp 561–588Google Scholar
  21. 21.
    USDA SunGrant Initiative (2008) Feedstock Partnerships. Sun Grant Association. http://www.sungrant.org/Feedstock+Partnerships/Research+Plots/. Accessed 25 June 2013
  22. 22.
    Hintz RL, Harmoney KR, Moore KJ, George JR, Brummer EC (1998) Establishment of switchgrass and big bluestem in corn with atrazine. Agron J 90:591–596CrossRefGoogle Scholar
  23. 23.
    Heggenstaller AH, Anex RP, Liebman M, Sundberg DN, Gibson LR (2008) Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740–1748. doi:10.2134/agronj2008.0087 CrossRefGoogle Scholar
  24. 24.
    Snapp SS, Swinton SM, Labarta R, Mutch D, Black JR, Leep R, Nyiraneza J, O’Neil K (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97:322–332Google Scholar
  25. 25.
    Buxton DR, Anderson IC, Hallam A (1999) Performance of sweet and forage sorghum grown continuously, double-cropped with winter rye, or in rotation with soybean and maize. Agron J 91:93–101CrossRefGoogle Scholar
  26. 26.
    Goerndt ME, Mize C (2008) Short-rotation woody biomass as a crop on marginal lands in Iowa. North J Appl For 25:82–86Google Scholar
  27. 27.
    Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410Google Scholar
  28. 28.
    Thelemann R, Johnson G, Sheaffer C, Banerjee S, Cai HW, Wyse D (2010) The effect of landscape position on biomass crop yield. Agron J 102:513–522. doi:10.2134/agronj2009.0058 CrossRefGoogle Scholar
  29. 29.
    Dale VH, Kline KL, Wiens J, Fargione J (2010) Biofuels: Implications for land use and biodiversity. Available from http://www.esa.org/biofuelsreports
  30. 30.
    Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264CrossRefGoogle Scholar
  31. 31.
    Ontl TA, Hofmockel KS, Cambardella CA, Schulte LA, Kolka RK (2013) Topographic and soil influences on root productivity of three bioenergy cropping systems. New Phytol 199:727–737. doi:10.1111/nph.12302 PubMedCrossRefGoogle Scholar
  32. 32.
    Ontl TA (2013) Soil carbon cycling and storage of bioenergy cropping systems acros a heterogeneous agroecosystem. Iowa State University, AmesGoogle Scholar
  33. 33.
    Iowa Environmental Mesonet (2013) Iowa Ag Climate Network. Iowa State University Available via Iowa State University. Available from mesonet.agron.iastate.edu/climodat/index.phtml. Accessed 3 June 2013
  34. 34.
    Elmore R, Abendroth L (2009) Update on corn plant populations and seed costs. Iowa State University Extension. Available from http://www.extension.iastate.edu/CropNews/2009/0423elmoreabendroth.htm
  35. 35.
    Vogel KP, Masters RA (2001) Frequency grid—a simple tool for measuring grassland establishment. J Range Manag 54:653–655. doi:10.2307/4003666 CrossRefGoogle Scholar
  36. 36.
    Schmer MR, Vogel KP, Mitchell RB, Moser LE, Eskridge KM, Perrin RK (2006) Establishment stand thresholds for switchgrass grown as a bioenergy crop. Crop Sci 46:157–161. doi:10.2135/cropsci2005.0264 CrossRefGoogle Scholar
  37. 37.
    Headlee W, Hall R, Zalesny R (2013) Establishment of alleycropped hybrid aspen “Crandon” in central Iowa, USA: effects of topographic position and fertilizer rate on aboveground biomass production and allocation. Sustainability 5:2874–2886CrossRefGoogle Scholar
  38. 38.
    Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788. doi:10.3390/ijms9050768 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rhinehart L (2006) Switchgrass as a bioenergy crop. National Sustainable Agriculture Information Service. Butte, MTGoogle Scholar
  40. 40.
    Parrish DJ, Wolf DD, Peterson PR, Daniels WL (1999) Successful establishment and management of switchgrass. Paper presented at the 2nd Eastern Native Grass Symposium, Baltimore, MDGoogle Scholar
  41. 41.
    Holzumeller EJ, Mize CW (2002) Improving tree establishment with forage crops. In: Van Sambeek JW, Dawson JO, Ponder Jr F, Loewenstein EF, Fralish JS (eds) 13th Central Harwood Forest Conference, University of Illinois, Urbana-Champaign, IL, 2002. U.S. Department of Agriculture, Forest Service, and North Central Research Station, pp 447–448Google Scholar
  42. 42.
    Delate K, Holzmueller E, Frederick DD, Mize C, Brummer C (2005) Tree establishment and growth using forage ground covers in an alley-cropped system in Midwestern USA. Agrofor Syst 65:43–52. doi:10.1007/s10457-004-5228-x CrossRefGoogle Scholar
  43. 43.
    EISA (2007) Energy Independence and Security Act of 2007. Public Law 110–140. 121 Stat. 1492. 19 Dec. 2007, vol 121Google Scholar
  44. 44.
    Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667. doi:10.2134/agronj2007.0150 CrossRefGoogle Scholar
  45. 45.
    Jarchow M, Liebman M, Dhungel S, Dietzel R, Sundberg D, Anex R, Chua T (2014) Tradeoffs among agronomic, energetic, and environmental performance characteristics of corn and prairie bioenergy cropping systems. GCB Bioenergy. doi:10.1111/gcbb.12096
  46. 46.
    Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30CrossRefGoogle Scholar
  47. 47.
    McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535CrossRefGoogle Scholar
  48. 48.
    Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459. doi:10.1080/07352680500316433 CrossRefGoogle Scholar
  49. 49.
    Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132:252–259CrossRefGoogle Scholar
  50. 50.
    Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3:299–312. doi:10.1111/j.1757-1707.2010.01088.x CrossRefGoogle Scholar
  51. 51.
    Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23:433–442CrossRefGoogle Scholar
  52. 52.
    Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164. doi:10.2135/cropsci2008.02.0117 CrossRefGoogle Scholar
  53. 53.
    Teel A, Barnhart S, Miller G (2003) Management guide for the production of switchgrass for biomass fuel in Southern Iowa. Iowa State University Extension and Outreach, AmesGoogle Scholar
  54. 54.
    Neamatollahi E, Jahansuz M, Mazaheri D, Bannayan M (2013) Intercropping. In: Lichtfouse E (ed) Sustain Agric Rev, vol 12. Sustainable Agriculture Reviews. Springer Netherlands, pp 119–142. doi:10.1007/978-94-007-5961-9_4
  55. 55.
    Parton WJ, Pouyat RV, Duke CS (2011) Ecological dimensions of biofuels. Ecol Appl 21:1037–1038PubMedCrossRefGoogle Scholar
  56. 56.
    Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. Plos One 7:e47149. doi:10.1371/journal.pone.0047149 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Liebman M, Helmers MJ, Schulte LA, Chase CA (2013) Using biodiversity to link agricultural productivity with environmental quality: results from three field experiments in Iowa. Renew Agric Food Syst 28:115–128. doi:10.1017/S1742170512000300 CrossRefGoogle Scholar
  58. 58.
    Asbjornsen H, Hernandez-Santana V, Liebman M, Bayala J, Chen J, Helmers M, Ong CK, Schulte LA (2013) Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew Agric Food Syst:1–25. doi:10.1017/S1742170512000385
  59. 59.
    Zhou X, Helmers MJ, Asbjornsen H, Kolka R, Tomer MD (2010) Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion. J Environ Qual 39:2006–2015. doi:10.2134/jeq2010.0151 PubMedCrossRefGoogle Scholar
  60. 60.
    Hernandez-Santana V, Zhou X, Helmers MJ, Asbjornsen H, Kolka R, Tomer M (2013) Native prairie filter strips reduce runoff from hillslopes under annual row-crop systems in Iowa, USA. J Hydrol 477:94–103. doi:10.1016/j.jhydrol.2012.11.013 CrossRefGoogle Scholar
  61. 61.
    Helmers MJ, Zhou X, Asbjornsen H, Kolka R, Tomer MD, Cruse RM (2012) Sediment removal by prairie filter strips in row-cropped ephemeral watersheds. J Environ Qual 41:1531–1539. doi:10.2134/jeq2011.0473 PubMedCrossRefGoogle Scholar
  62. 62.
    Tyndall J, Schulte L, Liebman M, Helmers M (2013) Field-level financial assessment of contour prairie strips for enhancement of environmental quality. Environ Manag 52:736–747. doi:10.1007/s00267-013-0106-9 CrossRefGoogle Scholar
  63. 63.
    Iowa Nutrient Reduction Strategy (2012) A science and technology-based framework to assess and reduce nutrients to Iowa waters and the Gulf of Mexico, Iowa Dept. of Agriculture and Land Stewardship, Iowa Dept. of Natural Resources, and Iowa State University College of Agriculture and Life Sciences, p. 197Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danielle M. Wilson
    • 1
  • Emily A. Heaton
    • 1
  • Lisa A. Schulte
    • 2
  • Theodore P. Gunther
    • 1
  • Monika E. Shea
    • 2
  • Richard B. Hall
    • 2
  • William Landon Headlee
    • 2
  • Kenneth J. Moore
    • 1
  • Nicholas N. Boersma
    • 1
  1. 1.Department of AgronomyIowa State UniversityAmesUSA
  2. 2.Department of Natural Resource Ecology and ManagementIowa State UniversityAmesUSA

Personalised recommendations