Skip to main content
Log in

Production Factors Controlling the Physical Characteristics of Biochar Derived from Phytoremediation Willow for Agricultural Applications

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Willow, a leading bioenergy feedstock, may be planted for bioremediation and has been used, more recently, as the biomass feedstock in the manufacture of biochar for agricultural applications. Here, we present a detailed study of the physical and chemical factors affecting willow char properties, where the feedstock is a by-product of bioremediation, potentially transferring pollutants such as heavy metals to the wood feed. Biochar samples were produced via pyrolysis of short-rotation coppice willow, grown on contaminated land, using several treatment times at heat treatment temperatures (HTTs) in the range 350–650 °C, under a constant flow of argon, set at either 100 or 500 mL min−1. The samples were analysed for yield, elemental analysis and structural characteristics, including surface area and pore size distribution, surface functionality and metal content. All chars obtained have high fixed carbon contents but vary in surface characteristics with a marked increase in basic character with increasing HTT, ascribed to the removal of surface oxygen moieties. Results indicate a minimum pyrolysis temperature of 450 °C is required to produce a defined mesoporous structure, as required to facilitate oxygen transport, HTT ≥ 550 °C produces total surface area of >170 m2 g−1 and, more importantly, an appreciable external surface area suitable for microbial colonisation. The data show that selection and optimisation of char properties is possible; however, the interplay of factors may mean some compromise is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  2. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  3. Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E (2012) Biochar: carbon sequestration, land remediation and impacts on soil microbiology. Crit Rev Environ Sci Technol 42:2311–2364. doi:10.1080/10643389.2011.574115

    Article  CAS  Google Scholar 

  4. Woolfe D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. doi:10.1038/ncomms1053

    Google Scholar 

  5. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  CAS  PubMed  Google Scholar 

  6. Roberts KG, Gloy BA, Joseph S, Scott N, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  PubMed  Google Scholar 

  7. Hossain MK, Strezov V, Yin Chan K, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171

    Article  CAS  PubMed  Google Scholar 

  8. van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

  9. Headlee WL, Brewer CE, Hall RB (2013) Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenerg Res. doi:10.1007/s12155-013-9355-y

    Google Scholar 

  10. Peng X, Ye LL, Wang CH, Zhou HBS (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and effects on soil properties of an ultisol in Southern China. Soil Tillage Res 112(2):159–166

    Article  Google Scholar 

  11. Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11(2):97–114

    Article  CAS  Google Scholar 

  12. Karami N, Clemente R, Moreno-Jimenez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191(1-3):41–48

    Article  CAS  PubMed  Google Scholar 

  13. Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME (2011) Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ Pollut 159(2):616–622

    Article  CAS  PubMed  Google Scholar 

  14. Bird MI, Ascough PL, Young IM, Wood CV, Scott AC (2008) X-ray microtomographic imaging of charcoal. J Archaeol Sci 35:2698–2706

    Article  Google Scholar 

  15. Abdullah H, Wu H (2009) Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuel 23:4174–4181

    Article  CAS  Google Scholar 

  16. Agblevor FA, Beis S, Kim SS, Tarrant R, Mante NO (2010) Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manag 30:298–307

    Article  CAS  PubMed  Google Scholar 

  17. Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069

    Article  Google Scholar 

  18. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  19. Boateng AA (2007) Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Ind Eng Chem Res 46:8857–8862

    Article  CAS  Google Scholar 

  20. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396

    Article  CAS  Google Scholar 

  21. Sheldon RA (2008) Why green chemistry and sustainability of resources are essential to our future. J Environ Monit 10(4):406–407. doi:10.1039/b801651h

    Article  CAS  PubMed  Google Scholar 

  22. Kwapinski W, Byrne CMP, Kryachko E, Wolfram P, Adley C, Leahy JJ, Novotny EH, Hayes MHB (2010) Biochar from biomass and waste. Waste Biomass Valorization 1(2):177–189

    Article  CAS  Google Scholar 

  23. Free HF, McGill CR, Hedley MJ (2010) The effect of biochars on maize (Zea mays) germination. N Z J Agric Res 53(1):1–4

    Article  Google Scholar 

  24. Lord RA, Atkinson J, Lane AN, Scurlock JMO, Street G (2008) Biomass, Remediation, re-Generation (BioReGen Life Project): Reusing brownfield sites for renewable energy crops. In: Khire MV, Alshawabkeh AN, Reddy KR (eds) GeoCongress 2008: Geotechnics of Waste Management and Remediation, vol 177. American Society of Civil Engineers Geotechnical Special Publication, pp 527–534

  25. Lord RA, Atkinson J, Scurlock MO, Lane AN, Rahman PKSM, Connolly HE, Street G (2007) Biomass, Remediation, re-Generation (BioReGen Life Project): Reusing brownfield sites for renewable energy crops. In: Energies ER (ed) 15th European Biomass Conference & Exhibition, Berlin, Florence, Italy ETA-Florence, Italy and WIP-Munich, Germany

  26. Stern N (2006) Stern review on the economics of climate change. HM Treasury, London

    Google Scholar 

  27. IPCC (2007) IPCC 4th Assessment Report: Climate Change 2007

  28. Ross AB, Junyapoon S, Jones JM, Williams KD, Bartle J (2005) A study of different soots using pyrolysis-GC-MS and comparison with solvent extractable material. J Anal Appl Pyrolysis 74:494–501

    Article  CAS  Google Scholar 

  29. Abdullah H, Mediaswanti KA, Wu H (2010) Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy Fuel 24:1972–1979

    Article  CAS  Google Scholar 

  30. Perez S, Renedo CJ, Ortiz A, Manana M, Silio D (2006) Energy evaluation of the Eucalyptus globulus and the Eucalyptus nitens in the north of Spain. Thermochim Acta 451(1-2):57–64

    Article  CAS  Google Scholar 

  31. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33(10):1641–1653

    Article  CAS  Google Scholar 

  32. BSI (1999) BS 1016-104.1:1999, ISO 11722:1999. Methods for analysis and testing of coal and coke. Proximate analysis. Determination of moisture content of the general analysis test sample. Determination of ash. BSI, London

  33. ASTM (2007) ASTM D1762-84. Standard Test Method for Chemical Analysis of Wood Charcoal

  34. Lange (1999) Lange's handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  35. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769

    Article  CAS  Google Scholar 

  36. Goertzen SL, Theriault KD, Oickle AM, Tarasuk AC, Andreas HA (2010) Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48:1252–1261

    Article  CAS  Google Scholar 

  37. EPA (1996) Method 3050B. Acid digestion of sedimants, sludges, and soils

  38. Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A (1991) Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can J Chem Eng 69(4):907–915

    Article  CAS  Google Scholar 

  39. Sweatman MB (2010) Equilibrium behaviour of a novel gas separation process, with application to carbon capture. Chem Eng Sci 65(13):3907–3913. doi:10.1016/j.ces.2010.03.016

    Article  CAS  Google Scholar 

  40. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72:243–248

    Article  CAS  Google Scholar 

  41. Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 651:117–138

    Article  CAS  PubMed  Google Scholar 

  42. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  43. Durenkamp M, Luo Y, Brookes PC (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42:2026–2029

    Article  CAS  Google Scholar 

  44. Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 183–206

    Google Scholar 

  45. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  46. Steiner C, Das KC, Garcia M, Förster B, Zech W (2007) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered Xanthic Ferralsol. Pedobiologia 51:359–366

    Article  CAS  Google Scholar 

  47. Deenik JL, McClellan T, Uehara G, Antal MJ Jr, Sonia C (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  48. Grossman JM, O'Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205

    Article  CAS  PubMed  Google Scholar 

  49. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  50. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic, London

    Google Scholar 

  51. Marsh H, Menendez R (1989). In: Marsh H (ed) Introduction to carbon science. Butterworths, London

  52. Rivera-Utrilla J, Bautilsta-Toledo I, Ferro-Carcia MA, Moreno-Catilla C (2001) Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol 76:1209–1215

    Article  CAS  Google Scholar 

  53. Biniak S, Szymanski G, Siedlewski J, Swaiatkowski A (1997) The characterisaitons of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810

    Article  CAS  Google Scholar 

  54. Starsinic M, Taylor RL, Walker PL, Painter PC (1983) FTIR studies of Saran chars. Carbon 21:69–74

    Article  CAS  Google Scholar 

  55. Zawadzki J (1988) Infrared spectroscopy in surface chemistry of carbons. In: Thrower PA (ed) Chemistry and physics of carbon, vol 21. Marcel Dekker, New York, p 147

    Google Scholar 

  56. Akhter MS, Keifer JR, Chugtai AR, Smith DM (1985) The absorption band at 1590 cm−1 in the infrared spectrum of carbons. Carbon 23:589–591

    Article  CAS  Google Scholar 

  57. Freitas JCC, Passamani EC, Orlando MTD, Emmerich FG, Garcia F, Sampaio LC, Bonagamba TJ (2002) Effects of ferromagnetic inclusions on 13C MAS NMR Spectra of heat-treated peat samples. Energy Fuel 16:1068–1075

    Article  CAS  Google Scholar 

  58. Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nonoura T, Antal MJ (2007) Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind Eng Chem Res 46:5954–5967

    Article  CAS  Google Scholar 

  59. Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379

    Article  Google Scholar 

  60. Witters N, Slycken S, Ruttens A, Adriaensen K, Meers E, Meiresonne L, Tack FG, Thewys T, Laes E, Vangronsveld J (2009) Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. Bioenerg Res 2(3):144–152. doi:10.1007/s12155-009-9042-1

    Article  Google Scholar 

  61. Ali MW, Zoltai SC, Radford FG (1988) A Comparison of dry and wet ashing methods for the elemental analysis of peat. Can J Soil Sci 68(2):443–447

    Article  CAS  Google Scholar 

  62. Enders A, Lehmann J (2012) Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun Soil Sci Plant Anal 43(7):1042–1052. doi:10.1080/00103624.2012.656167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UKERC and NESTA for their kind support, which enabled this project, and SETN for performance of ICP-OES measurements. KF funded by BBSRC BB/E024319. Willow samples were provided by the EU Life BioReGen Project Life05 ENV/UK/00128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashleigh J. Fletcher.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, A.J., Smith, M.A., Heinemeyer, A. et al. Production Factors Controlling the Physical Characteristics of Biochar Derived from Phytoremediation Willow for Agricultural Applications. Bioenerg. Res. 7, 371–380 (2014). https://doi.org/10.1007/s12155-013-9380-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9380-x

Keywords

Navigation