Fertilization of SRC Willow, II: Leaching and Element Balances

An Erratum to this article was published on 07 November 2013


Short rotation coppice (SRC) willow is an emerging cropping system in focus for production of biomass for energy. To increase production, the willow is commonly fertilized, but studies have shown differing effects of fertilization on biomass production, ranging from almost no response to considerable positive effects. Focus has also been on replacing mineral fertilizer with organic waste products, such as manure and sludge. However, the effect on biomass production and environmental impact of various dosage and types of fertilizer is not well described. Therefore we studied the environmental impacts of different doses of mineral fertilizer, manure and sewage sludge in a commercially grown SRC willow stand. We examined macro nutrient and heavy metal leaching rates and calculated element balances to evaluate the environmental impact. Growth responses were reported in a former paper (Sevel et al. “Fertilization of SRC Willow, I: Biomass Production Response” Bioenergy Research, 2013). Nitrogen leaching was generally low, between 1 and 7 kg N ha−1 year−1 when doses of up to 120 kg N ha−1 year−1 were applied. Higher doses of 240 and 360 kg N ha−1 as single applications caused leaching of 66 and 99 kg N ha−1 year−1, respectively, indicating N saturation of the system. Previous intensive farming including high doses of fertilizer may be responsible for a high soil N status and the high N leaching rates. However, moderate fertilization input could not compensate P and K exports with the biomass harvest. No elevated leaching of heavy metals was observed for any fertilization treatments and more cadmium than applied with the fertilizer was removed with the biomass from the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Danfors B, Ledin S, Rosenqvist H (1997) Energiskogsodling: handledning för odlare. Jordbrukstekniska Institutet

  2. 2.

    Dansk Landbrugsrådgivning (2011) Dyrkningsvejledning, Pil (in Danish). Dansk Landbrugsrådgivning. https://www.landbrugsinfo.dk/planteavl/afgroeder/energiafgroeder/pil-energiskov/sider/startside.aspx. Accessed 10 Jan 2011

  3. 3.

    DEFRA (2004) Best practice guidelines for applicants to DEFRA’s energy crops scheme—growing short rotation coppice. DEFRA Publication, Publication

  4. 4.

    Jordbruksverket (2012) Handbok för salixodlare (in Swedish). http://www2.jordbruksverket.se/webdav/files/SJV/trycksaker/Pdf_ovrigt/ovr250.pdf

  5. 5.

    Sennerby-Forsse L (1986) Energiskog—Handbok i praktisk odling (in Swedish). Avdelningen för energiskog, Institutionen för ekologi och miljövård

  6. 6.

    Sevel L, Nord-Larsen T, Ingerslev M, Jørgensen U, Raulund-Rasmussen K (2013) Fertilization of SRC Willow, I: Biomass Production Response. Bioenerg Res. doi:10.1007/s12155-013-9371-y

  7. 7.

    Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411

    Article  Google Scholar 

  8. 8.

    Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25(4):389–398

    Article  Google Scholar 

  9. 9.

    Alriksson B (1997) Influence of site factors on Salix growth with emphasis on nitrogen response under different soil conditions. Acta Universitatis agriculturae Sueciae, Silvestria, 46

    Google Scholar 

  10. 10.

    Aronsson P, Rosenqvist H (2011) Gödslingsrekommendationer för salix 2011 (In Swedish). SLU, Institut för Växtproduktionsekologi, Rapport 23 marts 2011

  11. 11.

    Aronsson PG, Bergstrom LF (2001) Nitrate leaching from lysimeter-grown short-rotation willow coppice in relation to N-application, irrigation and soil type. Biomass Bioenergy 21(3):155–164

    CAS  Article  Google Scholar 

  12. 12.

    Kopp RF, Abrahamson LP, White EH, Volk TA, Nowak CA, Fillhart RC (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenergy 20(1):1–7

    CAS  Article  Google Scholar 

  13. 13.

    Lærke P, Jørgensen U, Kjeldsen J (2010) Udbytte af pil fra 15 års forsøg (in Danish). Plantekongres 2010 Conference Proceedings, pp. 232–233

  14. 14.

    Mortensen J, Nielsen KH, Jorgensen U (1998) Nitrate leaching during establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. Biomass Bioenergy 15(6):457–466

    CAS  Article  Google Scholar 

  15. 15.

    Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35(10):4165–4173

    CAS  Article  Google Scholar 

  16. 16.

    Park BB, Yanai RD, Sahm JM, Lee DK, Abrahamson LP (2005) Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy 28(4):355–365

    CAS  Article  Google Scholar 

  17. 17.

    Aronsson PG, Bergstrom LF, Elowson SNE (2000) Long-term influence of intensively cultured short-rotation Willow Coppice on nitrogen concentrations in groundwater. J Environ Manag 58(2):135–145

    Article  Google Scholar 

  18. 18.

    Bergstrom L, Johansson R (1992) Influence of fertilized short-rotation forest plantations on nitrogen concentrations in groundwater. Soil Use Manag 8(1):36–40

    Article  Google Scholar 

  19. 19.

    Goodlass G, Green M, Hilton B, McDonough S (2007) Nitrate leaching from short-rotation coppice. Soil Use Manag 23(2):178–184

    Article  Google Scholar 

  20. 20.

    Dimitriou I, Aronsson P (2011) Wastewater and sewage sludge application to willows and poplars grown in lysimeters—plant response and treatment efficiency. Biomass Bioenergy 35(1):161–170

    CAS  Article  Google Scholar 

  21. 21.

    Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site–growth relationships. For Ecol Manag 121(1–2):41–55

    Article  Google Scholar 

  22. 22.

    Labrecque M, Teodorescu TI, Daigle S (1998) Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristics. Can J For Res Rev Can de Rech Forestiere 28(11):1621–1635

    Article  Google Scholar 

  23. 23.

    Labrecque M, Teodorescu TI (2001) Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For Ecol Manag 150(3):223–239

    Article  Google Scholar 

  24. 24.

    Labrecque M, Teodorescu TI, Daigle S (1997) Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenergy 12(6):409–417

    CAS  Article  Google Scholar 

  25. 25.

    Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag 19(3):187–192

    Article  Google Scholar 

  26. 26.

    Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11(1–2):175–180

    CAS  Article  Google Scholar 

  27. 27.

    Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Pulford ID, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4(1):59–72

    CAS  Article  Google Scholar 

  29. 29.

    Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut 157(3):931–937

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Pulford I, Dickinson N(2005) Phytoremediation technologies using trees. Trace elements in the environment. CRC Press, Bocca Raton, pp. 383–403

  31. 31.

    Aronsson P (2000) Nitrogen retention in vegetation filters of short-rotation willow coppice. Acta Univ Agric Sueciae Silvestria 161:1–39

    Google Scholar 

  32. 32.

    Aronsson P, Perttu K (2001) Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. Forest Chron 77(2):293–299

    Article  Google Scholar 

  33. 33.

    Dimitriou I (2005) Performance and sustainability of short-rotation energy crops treated with municipal and industrial residues. Acta Univ Agric Sueciae 44

  34. 34.

    DEFRA (2010) Fertiliser Manual (RB209) 8th Edition. DEFRA Publication

  35. 35.

    Borjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30(5):428–438

    Article  Google Scholar 

  36. 36.

    Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of short rotation coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35(2):835–842

    Article  Google Scholar 

  37. 37.

    Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2(4):444–475

    CAS  Article  Google Scholar 

  38. 38.

    Jansson PE, Cienciala E, Grelle A, Kellner E, Lindahl A, Lundblad M (1999) Simulated evapotranspiration from the Norunda forest stand during the growing season of a dry year. Agric For Meteorol 98–9:621–628

    Article  Google Scholar 

  39. 39.

    Persson G (1995) Willow stand evapotranspiration simulated for Swedish soils. Agric Water Manag 28(4):271–293

    Article  Google Scholar 

  40. 40.

    Christiansen JR, Elberling B, Jansson PE (2006) Modelling water balance and nitrate leaching in temperate Norway spruce and beech forests located on the same soil type with the CoupModel. For Ecol Manag 237(1–3):545–556

    Article  Google Scholar 

  41. 41.

    Persson G, Lindroth A (1994) Simulating evaporation from short-rotation forest—variations within and between seasons. J Hydrol 156(1–4):21–45

    Article  Google Scholar 

  42. 42.

    Katterer T, Andren O, Jansson PE (2006) Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils. Acta Agric Scand Sect B Soil Plant Sci 56(4):263–276

    Google Scholar 

  43. 43.

    Grip H, Halldin S, Lindroth A (1989) Water-use by intensively cultivated willow using estimated stomatal parameter values. Hydrol Process 3(1):51–63

    Article  Google Scholar 

  44. 44.

    Allerup P, Madsen H, Vejen F (1997) A comprehensive model for correcting point precipitation. Nord Hydrol 28(1):1–20

    Google Scholar 

  45. 45.

    Michelson DB (2004) Systematic correction of precipitation gauge observations using analyzed meteorological variables. J Hydrol 290(3–4):161–177

    Article  Google Scholar 

  46. 46.

    SAS Institute Inc (2008) SAS® 9.2 Software. Copyright 2002–2008 by SAS Institute Inc., Cary, NC, USA

  47. 47.

    Jørgensen U (2005) How to reduce nitrate leaching by production of perennial energy crops. In 3rd International Nitrogen Conference, Nanjing, China, 2004 Edited by Zhu Z, Minami K, Xing G Science Press USA Inc : 2005: 513–518

  48. 48.

    Dimitriou L, Aronsson P (2004) Nitrogen leaching from short-rotation willow coppice after intensive irrigation with wastewater. Biomass Bioenergy 26(5):433–441

    CAS  Article  Google Scholar 

  49. 49.

    Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M et al (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48(11):921–934

    Article  Google Scholar 

  50. 50.

    Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14(1):1–57

    CAS  Article  Google Scholar 

  51. 51.

    Ericsson T (1994) Nutrient cycling in energy forest plantations. Biomass Bioenergy 6(1–2):115–121

    CAS  Article  Google Scholar 

  52. 52.

    Springob G, Kirchmann H (2003) Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol Biochem 35(4):629–632

    CAS  Article  Google Scholar 

  53. 53.

    Andersen MK, Refsgaard A, Raulund-Rasmussen K, Strobel BW, Hansen HCB (2002) Content, distribution, and solubility of cadmium in arable and forest soils. Soil Sci Soc Am J 66(6):1829–1835

    CAS  Article  Google Scholar 

  54. 54.

    Holm PE, Rootzen H, Borggaard OK, Moberg JP, Christensen TH (2003) Correlation of cadmium distribution coefficients to soil characteristics. J Environ Qual 32(1):138–145

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34(7):1125–1131

    CAS  Article  Google Scholar 

  56. 56.

    Sukreeyapongse O, Holm PE, Strobel BW, Panichsakpatana S, Magid J, Hansen HCB (2002) pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. J Environ Qual 31(6):1901–1909

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Grelle A, Aronsson P, Weslien P, Klemedtsson L, Lindroth A (2007) Large carbon-sink potential by Kyoto forests in Sweden—a case study on willow plantations. Tellus Ser B Chem Phys Meteorol 59(5):910–918

    Article  Google Scholar 

  58. 58.

    Hellebrand HJ, Strahle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutr Cycl Agroecosyst 87(2):175–186

    Article  Google Scholar 

  59. 59.

    Hellebrand HJ, Scholz V, Kern J (2008) Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmos Environ 42(36):8403–8411

    CAS  Article  Google Scholar 

  60. 60.

    Dimitriou I, Mola-Yudego B, Aronsson P (2012) Impact of willow short rotation coppice on water quality. Bioenergy Res 5(3):537–545

    CAS  Article  Google Scholar 

  61. 61.

    Kyllingsbaek A, Hansen JF (2007) Development in nutrient balances in Danish agriculture 1980–2004. Nutr Cycl Agroecosyst 79(3):267–280

    CAS  Article  Google Scholar 

  62. 62.

    Hasselgren K (1998) Use of municipal waste products in energy forestry: highlights from 15 years of experience. Biomass Bioenergy 15(1):71–74

    CAS  Article  Google Scholar 

  63. 63.

    Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut 142(1):160–169

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Landberg T, Greger M (2002) Interclonal variation of heavy metal interactions in Salix viminalis. Environ Toxicol Chem 21(12):2669–2674

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Eriksson J, Ledin S (1999) Changes in phytoavailability and concentration of cadmium in soil following long term Salix cropping. Water Air Soil Pollut 114(1–2):171–184

    CAS  Article  Google Scholar 

  66. 66.

    Klang-Westin E, Perttu K (2002) Effects of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass Bioenergy 23(6):415–426

    CAS  Article  Google Scholar 

  67. 67.

    Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K et al (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34(9):1410–1418

    CAS  Article  Google Scholar 

Download references


This study was funded by HedeDanmark A/S, Dalgas Innovation, the Danish Agency for Science Technology and Innovation and Forest & Landscape, Copenhagen University. We greatly acknowledge Nordic Biomass for kindly providing a well-established SRC willow field for this experiment and for their help in the field work. Yara Denmark is acknowledged for kindly providing the mineral fertilizer. We thank Allan Overgaard Nielsen, Xhevat Haliti and Allan Nielsen for field work assistances in the establishment of the experiment and Jens Bonderup Kjeldsen, Aarhus University, for help and provision of TDR equipment. Lastly, we thank Johannes Falk and Vibe Gro for valuable discussions.

Author information



Corresponding author

Correspondence to Lisbeth Sevel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sevel, L., Ingerslev, M., Nord-Larsen, T. et al. Fertilization of SRC Willow, II: Leaching and Element Balances. Bioenerg. Res. 7, 338–352 (2014). https://doi.org/10.1007/s12155-013-9370-z

Download citation


  • COUP water model
  • Dose–response
  • Heavy metals
  • Leaching
  • Nitrate
  • Salix