BioEnergy Research

, Volume 7, Issue 1, pp 24–35 | Cite as

Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol

  • Amanda P. de Souza
  • Adriana Grandis
  • Débora C. C. Leite
  • Marcos S. Buckeridge


For hundreds of years, sugarcane has been a main source of sugar, used as a sweetener, and alcohol, fermented from the plant juice. The high cost of petroleum towards the end of the twentieth century stimulated the development of new fermentation technologies for producing economically viable bioethanol from sugarcane as an alternative to importing petroleum. More recently, awareness of the effects of greenhouse gas emissions due to the global climate changes propelled bioethanol as a viable renewable fuel. Consequently, sugarcane gained importance as a bioenergy feedstock. However, the lack of knowledge about sugarcane physiology, notably on aspects of photosynthesis and source–sink relationship, has slowed the advance of this expanding bioenergy-producing system. Besides the changes in source–sink relationship, another option to increase bioethanol production even more would be to use a greater fraction of the total biomass of plants, i.e., not only the soluble sugars but also the sugars present in the cell wall fractions. Here, we review the history of sugarcane as a bioenergy crop and discuss some of the relevant routes that could be adopted in the near future to make sugarcane an even better feedstock for producing biofuels.


Bioenergy feedstocks Biofuels Sugarcane bioethanol Cell wall Source–sink relationship Sustainability 



The authors thank Paul H. Moore and Melinda Moore for reading and improving drafts of this manuscript. This work is part of the production of the Instituto Nacional de Ciência e Tecnologia do Bioetanol (FAPESP 2008/57908-6 and CNPq 574002/2008-1) and of the Centro de Processos Biológicos e Industriais para Biocombustíveis (FAPESP 2009/52840-7 and CNPq 490022/2009-0).


  1. 1.
    Lynd LR (2008) Energy biotechnology. Curr Opin Biotech 19:199–201CrossRefGoogle Scholar
  2. 2.
    Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nature Biotechnol 26:169–172CrossRefGoogle Scholar
  3. 3.
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol 83:37–46CrossRefGoogle Scholar
  4. 4.
    Muchow RC, Wood AW, Keating BA (1994) Radiation interception and biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agr Res 45:37–49CrossRefGoogle Scholar
  5. 5.
    USGA—Usina Serra Grande Alagoas (2000) Em 1927, o Primeiro grande empreendimento brasileiro em álcool combustivel. Boletim Enfoque 7Google Scholar
  6. 6.
    BNDES and CGEE—Banco Nacional de Desenvolvimento Econômico e Social & Centro de Gestão e Estudos Estratégicos (2008) Sugarcane-based bioethanol: energy for sustainable development. BNDES, Rio de JaneiroGoogle Scholar
  7. 7.
    Wrigley A (2011) Opening Pandora's box: a new look at the industrial revolution. Vox, Research-based policy analysis and commentary from leading economists. Accessed 4 Mar 2013
  8. 8.
    Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810PubMedCrossRefGoogle Scholar
  9. 9.
    Goldemberg J (2010) The role of biomass in the world's energy system. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 3–14Google Scholar
  10. 10.
  11. 11.
    Amorim HV, Lopes ML, Oliveira JVCO, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275PubMedCrossRefGoogle Scholar
  12. 12.
    Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:1–18CrossRefGoogle Scholar
  13. 13.
    Fisher G, Prieler S, van Velthuizen H (2005) Biomass potential of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass Bioenergy 28:119–132CrossRefGoogle Scholar
  14. 14.
    Schemer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. PNAS 15:464–469CrossRefGoogle Scholar
  15. 15.
    Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429PubMedCrossRefGoogle Scholar
  16. 16.
    Cherubini F (2010) GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew Energ 35:1565–1573CrossRefGoogle Scholar
  17. 17.
    Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146PubMedCrossRefGoogle Scholar
  18. 18.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792PubMedCrossRefGoogle Scholar
  19. 19.
    USDA (2011) Biomass crop assistance program. Proposed BCAP giant miscanthus (Miscanthus × giganteus) establishment and production in Arkansas, Missouri, Ohio, and Pennsylvania. Accessed 10 Oct 2012
  20. 20.
    Huisman W (2003) Optimising harvesting and storage systems for energy crops in The Netherlands. International Conference on Crop Harvesting and Processing Louisville, Kentucky. Accessed 10 Oct 2012
  21. 21.
    Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86(11):2273–2282CrossRefGoogle Scholar
  22. 22.
    Erdal G, Esengün K, Erdal H, Gündüz O (2007) Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energ 32(1):35–41CrossRefGoogle Scholar
  23. 23.
    Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Res Research 14(1):65–76CrossRefGoogle Scholar
  24. 24.
    Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schhwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of genotypes. Agron J 95(5):1274–1280CrossRefGoogle Scholar
  25. 25.
    McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515–535CrossRefGoogle Scholar
  26. 26.
    Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–70PubMedCrossRefGoogle Scholar
  27. 27.
    Rooney WL, Texas A (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts Biorefining 1(2):147–157CrossRefGoogle Scholar
  28. 28.
    Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32:482–493CrossRefGoogle Scholar
  29. 29.
    Vogel KP, Masters RA (1998) Developing switchgrass into a biomass fuel crop for the Midwestern USA. Bioenergy '98: Expanding Bioenergy Paternships. Madison, WI. Accessed 15 Oct 2012
  30. 30.
    Stanturf JA, van Oosten C, Netzer DA, Coleman MD, Portwood CJ (2001) Ecology and silviculture of poplar plantations. In: Dickman DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research, Ottawa, pp. 153–206Google Scholar
  31. 31.
    Galbally P, Ryan D, Fagan CC, Finnan J, Grant J, McDonnell K (2012) Biosolid and distillery effluent amendments to Irish short rotation coppiced willow plantations: impacts on groundwater quality and soil. Agr Water Managment 116:193–203CrossRefGoogle Scholar
  32. 32.
    Börjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels—resource efficiency and environmental performance including direct land use changes. J Cleaner Production 19(2–3):108–120CrossRefGoogle Scholar
  33. 33.
    Uellendahl H, Wang G, Møller HB, Jørgensen U, Skiadas IV, Gavala HN, Ahring BK (2008) Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol 58(9):1841–7PubMedCrossRefGoogle Scholar
  34. 34.
    Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energ Policy 36(6):2086–2097CrossRefGoogle Scholar
  35. 35.
    Schneekloth J, Andales A (2009) Seasonal water needs and opportunities for limited irrigation for Colorado crops. Fact sheet no. 4718. Accessed 25 Jan 2013
  36. 36.
    USDA (2011) Proposed BCAP giant miscanthus (Miscanthus × giganteus) establishment and production in Arkansas, Missouri, Ohio, and Pennsylvania. Biomass Crop Assistant Program–Environmental Assessment. Accessed 25 Jan 2013
  37. 37.
    Singh S, Kumar A (2011) Development of water requirement factors for biomass conversion pathway. Biores Technol 102(2):1316–28CrossRefGoogle Scholar
  38. 38.
    Grip H, Perttu K (1982) Climate and water influences on energy forestry. Teknisk Rapport—Projekt Energiskogsodling 29: 20Google Scholar
  39. 39.
    Clinch RL, Thevathasan NV, Gordon AM, Volk TA, Sidders DM (2009) Biophysical interactions in a short rotation willow intercropping system in southern Ontario, Canada. Agric Ecosyst Environ 131(1–2):61–69CrossRefGoogle Scholar
  40. 40.
    CEPEGE (2012) Custos de produçao de cana-de-açúcar, açúcar e etanol no Brasil: acompanhamento da safra 2011/2012. Centro-Sul, Piracicaba, pp 57–59Google Scholar
  41. 41.
    Maung TA, Gustafson CR (2011) The economic feasibility of sugar beet biofuel production in central North Dakota. Biomass Bioenergy 35(9):3737–3747Google Scholar
  42. 42.
    Linton JA, Miller JC, Little RD, Petrolia DR, Coble KH (2011) Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States. Biomass Bioenergy 35(7):3050–3057CrossRefGoogle Scholar
  43. 43.
    Walsh ME, Ugarte DT, Shapouri H, Slinsky SP (2003) Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environ Res Econ 24:313–333CrossRefGoogle Scholar
  44. 44.
    Snowdon K, McIvor I, Nicholas, I (2008). Energy farming with willow in New Zealand. Accessed 25 January 2013
  45. 45.
    IEA (2007) International Energy Agency. Energy technology essentials—biofuel production. Accessed 15 Oct 2012
  46. 46.
    Martinelli LA, Filoso S (2008) Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 18(4):885–898PubMedCrossRefGoogle Scholar
  47. 47.
    Worley JW, Vaughan DH, Cundiff JS (1992) Energy analysis of ethanol production from sweet sorghum. Biores Technol 40(3):263–273CrossRefGoogle Scholar
  48. 48.
    Rastogi M, Gustafson R, Cooper J, Volk T, Caputo J, Johnson L, Puettmann M (2011) Life cycle assessment (LCA) of ethanol fuel from willow biomass. Accessed 22 Nov 2012
  49. 49.
    FAO (2010) FAOSTAT—Food and Agriculture Organization of the United Nations. Accessed 10 Oct 2012
  50. 50.
    Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R (2008) Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35(5):313–320PubMedCrossRefGoogle Scholar
  51. 51.
    Hauser RJ (2007) Introduction and summary. In: U. of I. Department of Agricultural and Consumer Economics (ed). Corn-based ethanol in Illinois and the US: a report from the Department of Agricultural and consumer Economics. Champaign-Urbana, ILGoogle Scholar
  52. 52.
    Haque M, Epplin F (2010) Switchgrass to ethanol: a field to fuel approach. Agricultural & Applied Economics Association 2010 AAEA, CAES, & WAEA Joint Annual Meeting. Denver, Colorado. Accessed 22 Nov 2012
  53. 53.
    Huang H-J, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA (2009) Effect of biomass species and plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass Bioenergy 33(2):234–246CrossRefGoogle Scholar
  54. 54.
    von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Progress 10(5):555–560CrossRefGoogle Scholar
  55. 55.
    Robbins MP, Evans G, Valentine J, Donnison IS, Allison GG (2012) New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energ Combust Scie 38:138–155CrossRefGoogle Scholar
  56. 56.
    Smeets EMW, Lewandoswski IM, Faaij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sust Energ Rev 13:1230–1245CrossRefGoogle Scholar
  57. 57.
    Koizumi T (2008) Biofuel policies in Asia. In: FAO Expert Meetings, vols. 5 and 6, Rome, ItalyGoogle Scholar
  58. 58.
    Puri M, Abraham RE, Barrow CJ (2009) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev 16:6022–6031CrossRefGoogle Scholar
  59. 59.
    Watson HK (2011) Potential to expand sustainable bioenergy from sugarcane in southern Africa. Energ Policy 39:5746–5750CrossRefGoogle Scholar
  60. 60.
    Martinez-Filho J, Burnquist HL, Vian CEF (2006) Bioenergy and the rise of sugarcane-based ethanol in Brazil. The magazine of food, farm, and resource issues. 2nd Quarter. 21(2) CHOICES 91Google Scholar
  61. 61.
    CGEE (Centro de Gestão e Estudos Estratégicos) (2009) Bioetanol combustível: uma oportunidade para o Brasil. Centro de Gestão e Estudos Estratégicos, Brasília, Distrito Federal, p 536Google Scholar
  62. 62.
    UNICA (2012) Statistics of sugarcane sector—2012. Accessed 12 Mar 2013
  63. 63.
    Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276PubMedCrossRefGoogle Scholar
  64. 64.
    Buckeridge MS, Dos Santos WD, De Souza AP (2010) Routes for cellulosic ethanol in Brazil. In: Cortez LAB (ed) Sugarcane bio-ethanol: R&D for productivity and sustainability. Edgard Blucher, São Paulo, pp 365–380Google Scholar
  65. 65.
    Dias MOS, Modesta M, Ensinas AV, Nebras SA, Maciel Filho R, Rossel CEV (2011) Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. Energ 36:3691–3703CrossRefGoogle Scholar
  66. 66.
    Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge MS, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LM, Ferrara MA, da Silva Bon EP, de Moraes LM, de Araújo JA, Torres FA (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresearch Technol 101:4820–4825CrossRefGoogle Scholar
  67. 67.
    Arruda P (2011) Perspective of sugarcane industry in Brazil. Trop Plant Biol 4:3–8CrossRefGoogle Scholar
  68. 68.
    Leal MRLV, Valle TL, Feltan JC et al (2010) Other feedstocks to etanol production. In: Cortez LAB (ed) Sugarcane bioethanol—R&D for productivity and sustainability. Blucher, São Paulo, pp 519–539Google Scholar
  69. 69.
    Moore PH (1995) Temporal and spatial regulation of sucrose metabolism in the sugarcane stem. Aust J Plant Physiol 22:661–679CrossRefGoogle Scholar
  70. 70.
    Figueiredo P (2008) Breve história da cana de açúcar e do papel do instituto agronômico no seu estabelecimento no Brasil. In: Dinardo-Miranda LL, Vanconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Campinas, São Paulo, pp 31–44Google Scholar
  71. 71.
    Landell MGA, Bressiani JA (2008) Melhoramento genetico, caracterização e manejo varietal. In: Dinardo-Miranda LL, Vanconcelos ACM, Landell MGA (eds.) Cana de açúcar. Instituto Agronômico, Campinas, Sao Paulo, p 882Google Scholar
  72. 72.
    Loureiro ME, Barbosa MHP, Lopes FJF et al (2010) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 199–240Google Scholar
  73. 73.
    Macedo IC, Cortez LAB (2005) O processamento industrial da cana de açúcar no Brasil. In: Uso da biomassa para produção de energia na industria brasileira. Campinas, São Paulo, pp. 247–268Google Scholar
  74. 74.
    Whittaker A, Botha FC (1997) Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol 115:1651–1659PubMedCentralPubMedGoogle Scholar
  75. 75.
    Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugarcane culm on the basis of in vitro kinetic data. Biochem J 358:437–445PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Rae AL, Perroux J, Grof CPL (2005) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825PubMedCrossRefGoogle Scholar
  77. 77.
    Walsh KB, Sky RC, Brown SM (2005) The anatomy of the pathway of sucrose unloading within the sugarcane stalk. Func Plant Biol 32:367–374CrossRefGoogle Scholar
  78. 78.
    McCormick AJ, Cramer MD, Watt DA (2009) Supply and demand: sink regulation of sugar accumulation in sugarcane. J Exp Bot 60:357–364PubMedCrossRefGoogle Scholar
  79. 79.
    McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770PubMedCrossRefGoogle Scholar
  80. 80.
    McCormick AJ, Cramer MD, Watt DA (2008) Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane. Ann Bot 101:89–102PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Gutiérrez-Miceli FA, Morales-Torres R, de Jesus Espinosa-Castaneda Y, Rincón-Rosales R, Mentes-Molina J, Oliva-Llaven MA, Dendooven L (2004) Effects of partial defoliation on sucrose accumulation, enzyme activity and agronomic parameters in sugar cane (Saccharum spp.). J Agr Crop Sci 190:256–261CrossRefGoogle Scholar
  82. 82.
    Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unraveling sucrose accumulation. Field Crop Res 92:149–158CrossRefGoogle Scholar
  83. 83.
    McCormick AJ, Cramer MD, Watt DA (2008) Culm sucrose accumulation promotes physiological decline of mature leaves in ripening sugarcane. Field Crop Res 108:250–258CrossRefGoogle Scholar
  84. 84.
    McCormick AJ, Cramer MD, Watt DA (2008) Differential expression of genes in the leaves of sugarcane in response to sugar accumulation. Trop Plant Biol 1:142–158CrossRefGoogle Scholar
  85. 85.
    McCormick AJ, Cramer MD, Watt DA (2008) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829PubMedCrossRefGoogle Scholar
  86. 86.
    De Souza AP, Gaspar M, da Silva EA, Waclawovsky AJ, Ulian EC, Nishiyama MY Jr, dos Santos RV, Teixeira MM, Souza GM, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127PubMedCrossRefGoogle Scholar
  87. 87.
    Ledon AC, Gonzales FAZ (1950) Industrialization of photosynthesis through the use of sugar cane. Proceedings Cuban Sugar Technologist 24:563–72Google Scholar
  88. 88.
    Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117PubMedCrossRefGoogle Scholar
  89. 89.
    Furbank RT, Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: a molecular approach. Plant Cell 7:797–807PubMedCentralPubMedGoogle Scholar
  90. 90.
    De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation of bioethanol production. Bioenerg Res 6:564–579CrossRefGoogle Scholar
  91. 91.
    Chen SF, Mowery RA, Scarlata CJ, Chambliss CK (2007) Compositional analysis of water-soluble materials in corn stover. J Agri Food Chem 55:2912–5918Google Scholar
  92. 92.
    Bothast RJ, Schlicher MA (2005) Biotechnological process for conversion of corn into ethanol. App Microbiol Biotechnol 67:19–25CrossRefGoogle Scholar
  93. 93.
    Ketiku AO, Oyenuga VA (1972) Changes in the carbohydrate constituents of cassava root-tuber during growth. J Sci Food Agri 23:1451–1456CrossRefGoogle Scholar
  94. 94.
    Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jun H-JG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98:1518–1525CrossRefGoogle Scholar
  95. 95.
    Sauter JJ, Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8:297–304CrossRefGoogle Scholar
  96. 96.
    Ai J, Tschirner U (2010) Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. BioresTechnol 101:215–221Google Scholar
  97. 97.
    Quintero JA, Montoya MI, Sachez OJ, Giraldo OH, Cardona CA (2008) Fuel ethanol productions from sugarcane and corn: comparative analysis for a Colombian case. Energ 33:385–399CrossRefGoogle Scholar
  98. 98.
    Carpenter LT, Pezeshki SR, Shields RFD Jr (2008) Responses of nonstructural carbohydrates to shoot removal and soil moisture treatments in Salix nigra. Trees 22:737–748CrossRefGoogle Scholar
  99. 99.
    Hamberg O, Rumessen JJ, Gudmand-Heyer E (1989) Inhibition of starch absorption by dietary fibre: a comparative study of wheat bran, sugar-beet fibre, and pea fibre. Scandinavian J Gastro 24:103–109CrossRefGoogle Scholar
  100. 100.
    Bar-Peled M, O’Neil MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Ann Rev Plant Biol 62:127–155CrossRefGoogle Scholar
  101. 101.
    Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568PubMedCrossRefGoogle Scholar
  102. 102.
    McCann M, Carpita N (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108Google Scholar
  103. 103.
    Lima DU, Santos MA, Tiné MA, Molle FRD, Buckeridge MS (2001) Patterns of expression of cell wall related genes in sugarcane. Gen Mol Biol 24(1):191–198CrossRefGoogle Scholar
  104. 104.
    Buckeridge MS, Rayon C, Urbanowicz B, Tiné MAS, Carpita NC (2004) Mixed linkage (1-3),(1-4)-beta-D-glucans of grasses. Cereal Chem 81(1):115–127CrossRefGoogle Scholar
  105. 105.
    Becker M, Vincent C, Reid JS (1995) Biosynthesis of (1,3)(1,4)-beta-glucan and (1,3)-beta-glucan in barley (Hordeum vulgare L.). Properties of the membrane-bound glucan synthases. Planta 195:331–338PubMedCrossRefGoogle Scholar
  106. 106.
    Buckeridge MS, Vergara CE, Carpita NC (1999) The mechanism of synthesis of a mixed-linkage (1-3),(1-4)beta-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in synthase complex. Plant Physiol 120:1105–1116PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Buckeridge MS, Vergara CE, Carpita NC (2001) Insight into multi-site mechanisms of glycosyl transfer in (1-4)beta-D-glycans provided by the cereal mixed linkage (1-3),(1-4)beta-D-glucan synthase. Phytochem 57:1045–1053CrossRefGoogle Scholar
  108. 108.
    Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-b-D-glucan synthesis in transgenic Arabidopsis. PNAS 106:5996–6001PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    dos Santos WD, Buckeridge MS (2011). Processo para aumentar a digestibilidade da parede celular de uma planta, composição para inibição de enzimas constituintes da via dos fenilpropanóides e uso de moduladores e inibidores químicos. Patent, INPI, Brazil, protocol 020110095739Google Scholar
  111. 111.
    Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotech J 11:709–716CrossRefGoogle Scholar
  113. 113.
    Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol 178(3):473–85PubMedCrossRefGoogle Scholar
  114. 114.
    Xin Z, Watenable N, Lam E (2010) Improving efficiency of cellulosic fermentation via genetic engineering to create “smart plants” for biofuel production. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 183–199Google Scholar
  115. 115.
    Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M (2007) Heterologous Acidothermus cellulolyticus 1,4-b-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. App Biochem Biotechnol 137:207–219CrossRefGoogle Scholar
  116. 116.
    Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32(7):582–595CrossRefGoogle Scholar
  117. 117.
    Buckeridge MS, De Souza AP, Arundale RA, Anderson-Teixeira K, DeLucia E (2012) Ethanol from sugarcane in Brazil: a “midway” strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy 4:119–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amanda P. de Souza
    • 1
  • Adriana Grandis
    • 1
  • Débora C. C. Leite
    • 1
  • Marcos S. Buckeridge
    • 1
  1. 1.Laboratório de Fisiologia Ecológica de Plantas (LAFIECO), Department of Botany, Institute of BioscienceUniversity of São PauloSão PauloBrazil

Personalised recommendations