Skip to main content
Log in

Biomass Production and Composition of Perennial Grasses Grown for Bioenergy in a Subtropical Climate Across Florida, USA

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Carbohydrate and lignin composition of feedstock materials are major factors in determining their bioenergy potential. This study was conducted to quantify dry biomass yield and the carbohydrate and lignin composition of six potential biofuel grasses (elephantgrass, energycane, sweetcane, giant reed, giant miscanthus, and sugarcane) across three sites in Florida for plant (2009) and first ratoon (2010) crops. Dry biomass yields ranged from about 30 to 50 Mg ha−1 and were generally greatest for elephantgrass, energycane, sweetcane, and sugarcane. Accordingly, total plant carbohydrate yields (20 to 25 Mg ha−1) were comparable among sugarcane, energycane, sweetcane, and elephantgrass, but were generally less for giant reed and even less for giant miscanthus. However, the contribution of total extractable carbohydrates and total fiber carbohydrates to total plant carbohydrate yields differed among species. Sugarcane had the highest concentrations of extractable carbohydrates (219 to 356 mg g−1), followed by energycane, then sweetcane, elephantgrass, and giant reed, with giant miscanthus having the lowest. Energycane and elephantgrass tended to have significantly more fiber glucose, and elephantgrass less xylose, than other species. Variability in total lignin concentrations on a fiber basis was relatively modest (250 to 285 mg g−1) across species, but was generally highest in sweetcane and giant reed. Overall, elephantgrass and energycane were prime regional candidates for cellulosic conversion using fermentation processes due to high yields and favorable fiber characteristics, although energycane tended to have higher extractable carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TPC:

Total plant carbohydrate

TEC:

Total extractable carbohydrate

TFC:

Total fiber carbohydrate

TFG:

Total fiber glucose

TFX:

Total fiber xylose

TFA:

Total fiber arabinose

ASL:

Acid-soluble lignin

AIL:

Acid-insoluble lignin

References

  1. Anderson WF, Casler MD, Baldwin BS (2008) Improvement of perennial forage species as feedstock for bioenergy. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science + Business Media, New York, pp 347–376

    Chapter  Google Scholar 

  2. Angelini LG, Ceccarini L, Bonari E (2005) Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. Eur J Agron 22:375–389

    Article  Google Scholar 

  3. Bi C, Rice JD, Preston JF (2009) Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1. Appl Environ Microbiol 75:395–404

    Article  PubMed  CAS  Google Scholar 

  4. Bi C, Zhang X, Ingram LO, Preston JF (2009) Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysates. Appl Environ Microbiol 75:5743–5749

    Article  PubMed  CAS  Google Scholar 

  5. Bischoff KP, Gravois KA, Reagan TE, Hoy JW, Kimbeng CA, LaBorde CM, Hawkins GL (2008) Registration of ‘L 79-1002’ sugarcane. J Plant Regist 2:211–217

    Article  Google Scholar 

  6. Byrt CS, Grof CPL, Furbank RT (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120–135

    Article  PubMed  CAS  Google Scholar 

  7. Caicedo HM, Dempere LA, Vermerris W (2012) Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires. Nanotechnology 23:105605

    Article  PubMed  Google Scholar 

  8. Chang CW, Yu WC, Chen WJ, Chang RF, Kao WS (2011) A study on the enzymatic hydrolysis of steam exploded napiergrass with alkaline treatment using artificial neural networks and regression analysis. J Taiwan Inst Chem Eng 42:889–894

    Article  CAS  Google Scholar 

  9. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  PubMed  CAS  Google Scholar 

  10. Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP (2006) Variation of S/G ratio and lignin content in Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 129–132:427–435

    Article  PubMed  Google Scholar 

  11. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225

    Article  CAS  Google Scholar 

  12. de Morais RF, de Souza BJ, Leite JM, de Barros Soares LH, Alves BJR, Boddey RM, Urquiaga S (2009) Elephantgrass genotypes for bioenergy production by direct biomass combustion. Pesq Agrop Brasileira 44:133–140

    Google Scholar 

  13. EISA (2007) Energy Independence and Security Act of 2007. Public Law 110–140. 121 Stat. 1492. 19 Dec. 2007, vol 121

  14. Erickson JE, Helsel ZR, Woodard KR, Vendramini JMB, Wang Y, Sollenberger LE, Gilbert RA (2011) Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agron J 103:1827–1833

    Article  Google Scholar 

  15. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. PNAS 108:3803–3808

    Article  PubMed  CAS  Google Scholar 

  16. Gilbert RA, Shine JM, Miller JD, Rice RW, Rainbolt CR (2006) The effect of genotype, environment and time of harvest on sugarcane yields in Florida, USA. Field Crop Res 95:156–170

    Article  Google Scholar 

  17. Glover JD, Culman S, DuPont ST, Broussard W, Young LM, Mangan M, Mai J, Crews TE, DeHann L, Buckly D, Ferris H, Turner RE, Reynolds HL, Wyse DL (2009) SYMP 9-4: perennial grasslands as benchmarks for agricultural sustainability. In The 94th ESA Annual Meeting

  18. Guretzky JA, Biermacher JT, Cook BJ, Kering MK, Mosali J (2011) Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 339:69–81

    Article  CAS  Google Scholar 

  19. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  Google Scholar 

  20. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14:2000–2014

    Article  Google Scholar 

  21. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32

    Article  PubMed  Google Scholar 

  22. Kering MK, Butler TJ, Biermacher JT, Guretzky JA (2012) Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenerg Res 5:61–70

    Article  Google Scholar 

  23. Knoll JE, Anderson WF, Strickland TC, Hubbard RK, Malik R (2012) Low-input production of biomass from perennial grasses in the coastal plain of Georgia, USA. Bioenerg Res 5:206–214

    Article  Google Scholar 

  24. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  25. Maiorella B, Blanch HW, Wilke CR (1983) By–product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–121

    Google Scholar 

  26. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  27. Mendu V, Shearin T, Campbell JE Jr, Stork J, Jae J, Crocker M, Huber G, DeBolt S (2012) Global bioenergy potential from high-lignin agricultural residue. PNAS 109:4014–4019

    Article  PubMed  CAS  Google Scholar 

  28. Mislevy P, Martin FG, Adjei MB, Miller JD (1997) Harvest management effects on quantity and quality of Erianthus plant morphological components. Biomass Bioenergy 13:51–58

    Article  Google Scholar 

  29. Mislevy P, Kalmbacher RS, Overman AJ, Martin FG (1986) Effect of fertilizer and nematicide treatments on crops grown for biomass. Biomass 11:243–253

    Article  Google Scholar 

  30. Ohta K, Alterthum F, Ingram LO (1990) Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli. Appl Environ Microbiol 56:463–465

    PubMed  CAS  Google Scholar 

  31. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, and Erbach, DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Lab, TN

  32. Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: yields during the first two years. Agron J 102:806–814

    Article  Google Scholar 

  33. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  34. Sami M, Annamalai K, Wooldridge M (2001) Co-firing of coal and biomass fuel blends. Prog Energy Combust Sci 27:171–214

    Article  CAS  Google Scholar 

  35. Sanderson MA, Brink GE, Higgins KF, Naugle DE (2004) Alternative uses of warm-season forage grasses. In: Moser LE et al (eds) Warm-season (C4) grasses. ASA/CSSA/SSSA, Madison, WI, pp 389–416

    Google Scholar 

  36. SAS Institute, Inc. (2009) The SAS system for Windows. Ver. 9.2. SAS Inst., Cary, NC

  37. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass; laboratory analytical procedure. In: DOE (ed) National Renewable Energy Laboratory, p 16

  38. Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475–486

    Article  Google Scholar 

  39. Sommerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  Google Scholar 

  40. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. PNAS 108:6300–6305

    Article  PubMed  CAS  Google Scholar 

  41. Thai Hoa D, Man TD, Hau NG (2008) Pretreatment of lignocellulosic biomass for enzymatic hydrolysis. ASEAN J Sci Technol Dev 25:341–346

    Google Scholar 

  42. Vanderghem C, Richel A, Jacquet N, Blecker C, Paquot M (2011) Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins. Polym Degrad Stab 96:1761–1770

    Article  CAS  Google Scholar 

  43. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153

    Article  Google Scholar 

  44. Walter A, Ensinas AV (2010) Combined production of second-generation biofuels and electricity from sugarcane residues. Energy 35:874–879

    Article  CAS  Google Scholar 

  45. Woodard KR, Prine GM (1993) Dry matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci 33:818–824

    Article  Google Scholar 

  46. Woodard KR, Prine GM (1991) Forage yield and nutritive value of elephantgrass as affected by harvest frequency and genotype. Agron J 83:541–546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a USDA special grant no. 2008-34606-19522, the Florida Agricultural Experiment Station, a Florida Farm to Fuel Grant and the Florida Energy Systems Consortium. We are grateful to Andrew Schreffler, Jim Boyer, and Johnathan Holland for laboratory and field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Erickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedenko, J.R., Erickson, J.E., Woodard, K.R. et al. Biomass Production and Composition of Perennial Grasses Grown for Bioenergy in a Subtropical Climate Across Florida, USA. Bioenerg. Res. 6, 1082–1093 (2013). https://doi.org/10.1007/s12155-013-9342-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9342-3

Keywords

Navigation