Skip to main content

Advertisement

Log in

n-Butanol Production from Acid-Pretreated Jatropha Seed Cake by Clostridium acetobutylicum

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

n-Butanol fermentation using Clostridium strains suffers from low titers due to the inability of the strains to tolerate n-butanol. The current study demonstrates a process to get high titer of n-butanol in a single batch mode from the renewable feedstock jatropha seed cake by employing Clostridium acetobutylicum. Chemical mutagenesis was done for improvement of the strain for better n-butanol tolerance and production. Optimization of the parameters resulted in 13.2 g L−1 of n-butanol in 120 h using acid-treated jatropha seed cake hydrolysate (7 % w/v) in anaerobic sugar medium. The process was scaled up to 15 L level, yielding 18.6 g L−1 of n-butanol in 72 h. The strain was found to be tolerant up to 30 g L−1 n-butanol under optimized conditions. The n-butanol tolerance was accompanied by over-expression of the stress response protein, GroEL, change in fatty acid profile, and ability to accumulate rhodamine 6G in the strain. The study has a significant impact on economically producing n-butanol from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105(6):1131–1147

    PubMed  CAS  Google Scholar 

  2. Atsumi S, Wu TY, Machado IM, Huang WC, Chen PY, Pellegrini M, Liao JC (2010) Evolution, genomic analysis and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449

    Article  PubMed  Google Scholar 

  3. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861

    PubMed  CAS  Google Scholar 

  4. Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277

    Article  PubMed  Google Scholar 

  5. Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and orobiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936

    Article  PubMed  CAS  Google Scholar 

  6. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Fuels 4:32

    CAS  Google Scholar 

  7. Ezeji TC, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on C. beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    Article  PubMed  CAS  Google Scholar 

  8. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  PubMed  CAS  Google Scholar 

  9. Goodarzi H, Bennett BD, Amini S, Reaves ML, Hottes AK, Rabinowitz JD, Tavazoie S (2010) Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol Syst Biol 6:378

    Article  PubMed  Google Scholar 

  10. Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  PubMed  CAS  Google Scholar 

  11. Jang YS, Malaviya A, Cho C, Lee J, Lee SY (2012) Butanol production from renewable biomass by Clostridia. Bioresour Technol 123:653–663

    Article  PubMed  CAS  Google Scholar 

  12. Jones DT, Woods DR (1986) Acetone butanol fermentation revisited. Microbiol Rev 50:484–524

    PubMed  CAS  Google Scholar 

  13. King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  PubMed  CAS  Google Scholar 

  14. Kumar M, Gayen K (2011) Development of biobutanol production: new insights. Appl Energy 88:1999–2012

    Article  CAS  Google Scholar 

  15. Lazaroaie MM (2009) Mechanisms involved in organic solvent resistance in Gram-negative bacteria. World Acad Sci Eng Technol 54:648–658

    Google Scholar 

  16. Lee SJ, Oh EK, Oh YH, Won JI, Han SO, Lee JW (2010) Increased ethanol resistance in ethanolic Escherichia coli by insertion of heat-shock genes BEM1 and SOD2 from Saccharomyces cerevisiae. Biotechnol Bioprocess Eng 15:770–776

    Article  CAS  Google Scholar 

  17. Li J, Zhao JB, Zhao M, Yang YL, Jiang WH, Yang S (2010) Screening and characterization of butanol tolerant microorganisms. Letts Appl Microbiol 50:373–379

    Article  CAS  Google Scholar 

  18. Liang Y, Siddaramu T, Yesuf J, Sarkany N (2010) Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol 101:6417–6424

    Article  PubMed  CAS  Google Scholar 

  19. Long S, Jones DT, Woods DR (1984) Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262. Appl Microbiol Biotechnol 20:256–261

    Article  CAS  Google Scholar 

  20. Luo LH, Seo PS, Seo JW, Heo SY, Kim DH, Kim CH (2009) Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnol Lett 31:1867–1871

    Article  PubMed  CAS  Google Scholar 

  21. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of nontoxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215

    Article  CAS  Google Scholar 

  22. Makkar HPS, Becker K, Schmook B (1998) Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Hum Nutr (Formerly Qualitas Plantarum) 52:31–36

    Article  CAS  Google Scholar 

  23. Makkar HPS, Francis G, Becker K (2008) Protein concentrate from Jatropha curcas screw pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88:1542–48

    Article  CAS  Google Scholar 

  24. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  PubMed  CAS  Google Scholar 

  25. Nishino K, Yamaguchi A (2004) Role of histone-like protein H–NS in multidrug resistance of Escherichia coli. J Bacteriol 186:1423–1429

    Article  PubMed  CAS  Google Scholar 

  26. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  PubMed  CAS  Google Scholar 

  27. Parekh M, Formanek J, Blaschek HP (1998) Development of a cost effective glucose–corn steep medium for production of butanol by Clostridium beijerinckii. J Ind Microbiol Biotechnol 21:187–191

    Article  CAS  Google Scholar 

  28. Pfromm HP, Amanor-Boadu V, Richard N, Vadlani P, Madl R (2010) Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy 34:515–524

    Article  CAS  Google Scholar 

  29. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    Article  PubMed  CAS  Google Scholar 

  30. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I—use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  PubMed  CAS  Google Scholar 

  31. Qureshi N, Saha BC, Dien BS, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I—use of barley straw hydrolysate. Biomass Bioener 34:559–565

    Article  CAS  Google Scholar 

  32. Qureshi N, Saha BC, Ronald EH, Bruce D, Stephen H, Siqing L, Loren I, Michael JB, Gautam S, Michael AC (2010) Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysates (2010). Biomass Bioenergy 34:566–571

    Article  CAS  Google Scholar 

  33. Rakshit KD, Darukeshwara J, Rathina Raj K, Narasimhamurthy K, Saibaba P, Bhagya S (2008) Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem and Toxicol 46:3621–3625

    Article  CAS  Google Scholar 

  34. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Ann Rev Microbiol 56:743–768

    Article  CAS  Google Scholar 

  35. Ranjan A, Khanna S, Mohalkar VS (2013) Feasibility of rice straw as alternate substrate for biobutanol production. Appl Energy 103:32–38

    Article  CAS  Google Scholar 

  36. Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 6:e17678

    Article  PubMed  CAS  Google Scholar 

  37. Samuelov NS, Lamed R, Lowe S, Zeikus JG (1991) Influence of CO2–HCO3 + levels and pH on growth, succinate production and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019

    PubMed  CAS  Google Scholar 

  38. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  PubMed  CAS  Google Scholar 

  39. Sikkema J, De Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  40. Tasun K, Chose P, Ghen K (1970) Sugar determination by DNS method. Biotechnol Bioeng 12:991–992

    Google Scholar 

  41. Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and Clostridium acetobutylicum. J Bacteriol 186(7):2006–2018

    Article  PubMed  CAS  Google Scholar 

  42. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  PubMed  CAS  Google Scholar 

  43. Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnol Adv 29:442–452

    Article  PubMed  CAS  Google Scholar 

  44. Volherbst- Schneck K, Sands JA, Montenecourts BS (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47:193–194

    Google Scholar 

  45. Zingaro KA, Papoutsakis ET (2013) GroES overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol,1, 2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the encouragement and support of Reliance Life Sciences Pvt. Ltd. in carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhya Rangaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isar, J., Joshi, H. & Rangaswamy, V. n-Butanol Production from Acid-Pretreated Jatropha Seed Cake by Clostridium acetobutylicum . Bioenerg. Res. 6, 991–999 (2013). https://doi.org/10.1007/s12155-013-9332-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9332-5

Keywords

Navigation