Skip to main content

Advertisement

Log in

Biomass Yield and Greenhouse Gas Emissions from a Drained Fen Peatland Cultivated with Reed Canary Grass under Different Harvest and Fertilizer Regimes

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Reed canary grass (RCG, Phalaris arundinacea L.) is a suitable energy crop for cultivation in northern peatlands. However, the atmospheric impact of RCG cultivation as influenced by harvest frequency and fertilization is not clear. Here, we compared the biomass yield and greenhouse gas (GHG) balance for RCG cultivation in peatlands affected by cutting frequency and fertilizer managements. The managements included one-cut (OC) and two-cut (TC) systems that were either fertilized (TC-F) or unfertilized (TC-U) after the first cut in summer. Biomass yield of OC, TC-F and TC-U were 12, 16 and 11 Mg dry biomass per hectare per year, respectively. GHG fluxes of CO2, N2O and CH4 were measured with closed chamber techniques in the period between first and second (final) harvest of the TC managements, i.e. from 15 June to 23 September 2011. In the GHG monitoring period of 100 days, all systems were net sources of CO2 corresponding to 64 ± 3, 217 ± 15 and 50 ± 23 g CO2-C m−2 (mean ± standard error, n = 3) from the OC, TC-F and TC-U systems, respectively. In the same period, emissions of N2O from TC-F were ten times higher as compared to OC and TC-U. Emissions of CH4 were negligible from all systems. The TC systems could not improve the GHG balance during cultivation (271, 663 and 210 g CO2e-C m−2 emissions from the OC, TC-F and TC-U systems, respectively), but in a broader GHG life cycle perspective, the increased biomass yield by TC-F could replace more fossil fuel and offset at least some of the higher emissions from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aravindhakshan SC, Epplin FM, Taliaferro CM (2011) Switchgrass, Bermudagrass, Flaccidgrass, and Lovegrass biomass yield response to nitrogen for single and double harvest. Biomass Bioenerg 35:308–319

    Article  CAS  Google Scholar 

  2. Audet J, Elsgaard L, Kjaergaard C, Larsen SE, Hoffmann CC (2012) Effect of riparian wetland restoration on greenhouse gas emissions. Proceedings from the 7th SWS 2012 European chapter meeting: wetland restoration – challenges and opportunities, pp 43

  3. Baggs EM, Philippot L (2011) Nitrous oxide production in the terrestrial environment. In: Moir JW (ed) Nitrogen cycling in bacteria: molecular analysis. Caister Academic, Norwich

    Google Scholar 

  4. Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr Opin Environ Sust 3:379–388

    Article  Google Scholar 

  5. Burnham K, Anderson D (2004) Multimodel inference. Sociol Method Res 33:261–304

    Article  Google Scholar 

  6. Burrows EH, Bubier JL, Mosedale A, Cobb GW, Crill PM (2005) Net ecosystem exchange of carbon dioxide in a temperate poor fen: a comparison of automated and manual chamber techniques. Biogeochem 76:21–45

    Article  Google Scholar 

  7. Chapuis-Lardy L, Wrage N, Metay A, Chotte J, Bernoux M (2007) Soils, a sink for N2O? A review. Glob Chang Biol 13:1–17

    Article  Google Scholar 

  8. Christensen S (1992) Non-destructive assessment of growth parameters in spring barley. Eur J Agron 1:187–193

    Google Scholar 

  9. Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  10. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 8:389–395

    Article  CAS  Google Scholar 

  11. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does miscanthus do it? Plant Physiol 150:2104–2115

    Article  PubMed  CAS  Google Scholar 

  12. Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Chang Biol Bioenerg 4:372–391

    Article  CAS  Google Scholar 

  13. Elsgaard L, Görres C-M, Hoffmann CC, Blicher-Mathiesen G, Schelde K, Petersen SO (2012) Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management. Agric Ecosyst Environ 162:52–67

    Article  CAS  Google Scholar 

  14. Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45:311–316

    Article  CAS  Google Scholar 

  15. Hyvönen NP, Huttuneen JT, Shurpali NJ, Tavi NM, Repo ME, Martikainen PJ (2009) Fluxes of nitrous oxide and methane on an abandoned peat extraction site: effect of reed canary grass cultivation. Biores Technol 100:4723–4730

    Article  Google Scholar 

  16. IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  17. Kandel TP, Elsgaard L, Lærke PE (2012) Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. Glob Chang Biol Bioenerg. doi:10.1111/gcbb.12020

  18. Kandel TP, Sutaryo S, Møller HB, Jørgensen U, Lærke PE (2013) Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency. Biores Technol 130:659–666

    Article  CAS  Google Scholar 

  19. Karki S (2011) Greenhouse gas emissions from cultivation of perennial bioenergy crop- reed canary grass (Phalaris arundinacea L.) on a drained fen peatland: focus on methane and nitrous oxide emissions. MSc thesis. Aarhus University, Aarhus

  20. Kasimir-Klemedtsson A, Klemedtsson L, Berglund K, Martikainen P, Silvola J, Oenema O (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manag 13:245–250

    Article  Google Scholar 

  21. Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, vol 9, 2nd edn, Agronomy monographs. ASA and SSSA, Madison, pp 643–693

    Google Scholar 

  22. Kumar A, Sokhansanj S (2007) Switchgrass (Panicum vigratum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model. Biores Technol 98:1033–1044

    Article  CAS  Google Scholar 

  23. Kutzbach L, Schneider J, Sachs T, Giebels M, Nykänen H, Shurpali NJ, Martikainen PJ, Alm J, Wilmking M (2007) CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosci 4:1005–1025

    Article  CAS  Google Scholar 

  24. Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  25. Laine A, Riutta T, Juutinen S, Väliranta M, Tuittila ES (2009) Acknowledging the spatial heterogeneity in modelling/reconstructing carbon dioxide exchange in a northern aapa mire. Ecol Model 220:2646–2655

    Article  CAS  Google Scholar 

  26. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361

    Article  Google Scholar 

  27. Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117

    Article  PubMed  CAS  Google Scholar 

  28. Maljanen M, Martikainen PJ, Aaltonen H, Silvola J (2002) Short-term variation in fluxes of carbon dioxide, nitrous oxide and methane in cultivated and forested organic boreal soils. Soil Biol Biochem 34:577–584

    Article  CAS  Google Scholar 

  29. Maljanen M, Komulainen VM, Hytönen J, Martikainen PJ, Laine J (2004) Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil characteristics. Soil Biol Biochem 36:1801–1808

    Article  CAS  Google Scholar 

  30. Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosci 7:2711–2738

    Article  CAS  Google Scholar 

  31. Maljanen M, Martikainen PJ, Walden J, Silvola J (2001) CO2 exchange in an organic field growing barley or grass in eastern Finland. Glob Chang Biol 7:679–692

    Article  Google Scholar 

  32. Mander Ü, Järveoja J, Maddison M, Soosaar K, Aavola R, Ostonen I, Salm JO (2012) Reed canary grass cultivation mitigates greenhouse gas emissions from abandoned peat extraction areas. Glob Chang Biol Bioenerg 4:462–474

    Article  CAS  Google Scholar 

  33. Massé D, Gilbert Y, Savoie P, Bélanger G, Parent G, Babineau D (2010) Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresour Technol 101:9536–9541

    Article  PubMed  Google Scholar 

  34. Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68:21–32

    Article  Google Scholar 

  35. Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61:888–902

    Article  Google Scholar 

  36. Petersen SO, Hoffman CC, Schäfer C-M, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SB, Greve MH (2012) Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosci 8:10017–10067

    Google Scholar 

  37. Regina K, Syvasalo E, Hannukkala A, Esala M (2004) Fluxes of N2O from farmed peat soils in Finland. Eur J Soil Sci 55:591–599

    Article  CAS  Google Scholar 

  38. Reynolds JH, Walker CL, Kirchner MJ (2000) Nitrogen removal in switchgrass biomass under two harvest systems. Biomass Bioenerg 19:281–286

    Article  CAS  Google Scholar 

  39. Schäfer C-M, Elsgaard L, Hoffmann CC, Petersen SO (2012) Seasonal methane dynamics in three temperate grasslands on peat. Plant Soil 357:339–353

    Article  Google Scholar 

  40. Seppälä M, Paavola T, Lehtomäki A, Rintala J (2009) Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresour Technol 100:2952–2958

    Article  PubMed  Google Scholar 

  41. Shurpali NJ, Strandman H, KilpelaInen A, Huttunen J, Hyvönen N, Biasi C, Kellomäki S, Martikainen PJ (2010) Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. Glob Chang Biol Bioenerg 2:130–138

    CAS  Google Scholar 

  42. Stolk PC, Hendriks RFA, Jacobs CMJ, Moors EJ, Kabat P (2011) The effect of aggregates on N2O emission from denitrification in an agricultural peat soil. Biogeosci Discuss 8:3253–3287

    Article  Google Scholar 

  43. Thomason WE, Raun WR, Johnson GV, Taliaferro CM, Freeman KW, Wynn KJ, Mullen RW (2005) Switchgrass response to harvest frequency and time and rate of applied nitrogen. J Plant Nutr 27:1199–1226

    Article  Google Scholar 

  44. Thomsen A, Schelde K, Drøscher P, Steffensen F (2007) Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity. Precis Agric 8:213–223

    Article  Google Scholar 

  45. Thornley JHM, Johnson IR (1990) Plant and crop modelling: a mathematical approach to plant and crop physiology. Clarendon, Oxford

    Google Scholar 

  46. Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Biores Technol 102:9395–9402

    Article  CAS  Google Scholar 

  47. Velthof G, Oenema O, Postma R, Van Beusichem M (1996) Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr Cycl Agroecosys 46:257–267

    Article  Google Scholar 

  48. Venendaal R, Jorgensen U, Foster CA (1997) European energy crops: a synthesis. Biomass Bioenerg 13:147–185

    Article  Google Scholar 

  49. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  50. Wheatley RE, MacDonald R, Smith AM (1989) Extraction of nitrogen from soils. Biol Fertil Soils 8:189–190

    Article  Google Scholar 

  51. Wrobel C, Coulman BE, Smith DL (2008) The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agric Scand BSP 59:1–18

    Google Scholar 

  52. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  53. Zhou X, Ge ZM, Kellomäki S, Wang KY, Peltola H, Martikainen P (2011) Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. Glob Chang Biol Bioenerg 3:223–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by funding from the European Regional Development Fund as a part of the projects ENERCOAST (http://enercoast.net/) and BioM (http://www.biom-kask.eu/). The authors express thanks to Bodil B. Christensen, Jens B. Kjeldsen, Jørgen M. Nielsen, Karin Dyrberg and Stig T. Rasmussen for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanka P. Kandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandel, T.P., Elsgaard, L., Karki, S. et al. Biomass Yield and Greenhouse Gas Emissions from a Drained Fen Peatland Cultivated with Reed Canary Grass under Different Harvest and Fertilizer Regimes. Bioenerg. Res. 6, 883–895 (2013). https://doi.org/10.1007/s12155-013-9316-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9316-5

Keywords

Navigation