BioEnergy Research

, Volume 6, Issue 2, pp 591–600 | Cite as

Geographical Assessment of Microalgae Biofuels Potential Incorporating Resource Availability

  • Jason C. Quinn
  • Kimberly B. Catton
  • Sara Johnson
  • Thomas H. Bradley
Article

Abstract

Previous assessments of the economic feasibility and large-scale productivity of microalgae biofuels have not considered the impacts of land and carbon dioxide (CO2) availability on the scalability of microalgae-based biofuels production. To accurately assess the near-term productivity potential of large-scale microalgae biofuel in the USA, a geographically realized growth model was used to simulate microalgae lipid yields based on meteorological data. The resulting lipid productivity potential of Nannochloropsis under large-scale cultivation is combined with land and CO2 resource availability illustrating current geographically feasible production sites and corresponding productivity in the USA. Baseline results show that CO2 transport constraints will limit US microalgae-based bio-oil production to 4 % of the 2030 Department of Energy (DOE) alternative fuel goal. The discussion focuses on synthesis of this large-scale productivity potential results including a sensitivity analysis to land and CO2 resource assumptions, an evaluation of previous modeling efforts, and their assumptions regarding the transportation of CO2, the feasibility of microalgae to meet DOE 2030 alternative fuel goals, and a comparison of the productivity potential in several key regions of the USA.

Keywords

Biofuels GIS Microalgae Model Carbon dioxide 

Abbreviations

bbl

Barrel

CO2

Carbon dioxide

DOE

Department of energy

GIS

Geospatial information system

Supplementary material

12155_2012_9277_MOESM1_ESM.pdf (2.2 mb)
ESM 1(PDF 2.19 mb)

References

  1. 1.
    Energy Information Administration (2010) World crude oil prices. http://tonto.eia.doe.gov/dnav/pet/pet_pri_wco_k_w.htm. Accessed 2010
  2. 2.
    Doney SC (2011) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328(5985):1512–1516. doi:10.1126/science.1185198 CrossRefGoogle Scholar
  3. 3.
    Kerr RA, Kintisch E (2010) Climate change NRC reports strongly advocate action on global warming. Science 328(5982):1085–1085PubMedCrossRefGoogle Scholar
  4. 4.
    Trenberth KE (2010) The climate fix what scientists and politicians won't tell you about global warming. Science 330(6008):1178–1179CrossRefGoogle Scholar
  5. 5.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43. doi:10.1007/s12155-008-9008-8 CrossRefGoogle Scholar
  6. 6.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799. doi:10.1126/science.1189003 PubMedCrossRefGoogle Scholar
  7. 7.
    Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980. doi:10.1021/es102052y PubMedCrossRefGoogle Scholar
  8. 8.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  9. 9.
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820. doi:10.1021/bp.070371k Google Scholar
  10. 10.
    Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56. doi:DOI:10.1016/j.biortech.2010.06.048 PubMedCrossRefGoogle Scholar
  12. 12.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  13. 13.
    Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531CrossRefGoogle Scholar
  14. 14.
    Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ (2011) Life-cycle analysis of algal lipid fuels with the greet model. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, Oak RidgeGoogle Scholar
  15. 15.
    Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286PubMedCrossRefGoogle Scholar
  16. 16.
    Maxwell EL, Folger AG, Hogg SE (1985) Resource evaluation and site selection for microalgae production systems. Solar Energy Research Institute:SERI/TR-215-2484Google Scholar
  17. 17.
    Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:W00H04. doi:10.1029/2010wr009966 CrossRefGoogle Scholar
  18. 18.
    Magnuson J (2010) Algal biofuels. Paper presented at the Washington State Bioenergy Research Symposium, Seattle, WA, 8 November 2010Google Scholar
  19. 19.
    Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12:573–608CrossRefGoogle Scholar
  20. 20.
    Davis R, Fishman D, Frank ED, Wigmosta MS, Aden A, Coleman AM et al (June 2012) Renewable diesel from algal lipids: an integrated baseline for cost, emissions, and resource potential from a harmonized model. US Department of Energy Biomass Program. ANL/ESD/12-4, NREL/TP-5100-55431, PNNL-21437Google Scholar
  21. 21.
    Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) Microalgae as a source of liquid fuels. Final Technical Report, US Department of Energy, Office of Research: DOE/ER/30014-TRGoogle Scholar
  22. 22.
    Borowitzka M (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4(3):267–279. doi:10.1007/bf02161212 CrossRefGoogle Scholar
  23. 23.
    Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515CrossRefGoogle Scholar
  24. 24.
    Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, BerkeleyGoogle Scholar
  25. 25.
    Sun A, Davis R, Starbuck M, Ben-Amotz A, Pate R, Pienkos PT (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36(8):5169–5179. doi:10.1016/j.energy.2011.06.020 CrossRefGoogle Scholar
  26. 26.
    Benemann JR (1996) Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report, MarchCrossRefGoogle Scholar
  27. 27.
    Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref-Biofpr 3(4):431–440. doi:10.1002/bbb.159 CrossRefGoogle Scholar
  28. 28.
    Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  29. 29.
    Williams PJL, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590. doi:10.1039/b924978h CrossRefGoogle Scholar
  30. 30.
    James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol 17(7):895–906. doi:10.1089/cmb.2009.0078 PubMedCrossRefGoogle Scholar
  31. 31.
    Quinn J, de Winter L, Bradley T (2011) Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol 102(8):5083–5092PubMedCrossRefGoogle Scholar
  32. 32.
    Quinn J, Catton K, Wagner N, Bradley T (2012) Current large-scale us biofuel potential from microalgae cultivated in photobioreactors. BioEnergy Res 5(1):49–60. doi:10.1007/s12155-011-9165-z CrossRefGoogle Scholar
  33. 33.
    Wilcox S (2007) 1991–2005 National solar radiation database. http://www.osti.gov/energycitations/servlets/purl/908182-AmuLTA/. Accessed 1 Oct 2010
  34. 34.
    ArcGIS (2010) World topographic map. http://www.arcgis.com/home/item.html?id=f2498e3d0ff642bfb4b155828351ef0e. Accessed 1 Nov 2010
  35. 35.
    U.S. Geological Survey (2001) National land cover database (NLCD 2001). http://www.mrlc.gov/nlcd_multizone_map.php. Accessed 15 Nov 2010
  36. 36.
    Lansford R, Hernandez J, Enis P, Truby D, Mapel C (1990) Evaluation of available saline water resources in New Mexico for the production of microalgae. Solar Energy Research Institute: SERI/TR-232-3597Google Scholar
  37. 37.
    Muhs J, Viamajala S, Heydorn B, Edwards M, Hu Q, Hobbs R et al. (2009) A summary of opportunities, challenges, and research needs: algae biofuels & carbon recycling. Utah State University. www.utah.gov/ustar/documents/63.pdf. Accessed 28 Jan 2011
  38. 38.
    Consultative Group on International Agricultural Research (2010) Cgiar csi. www.cgiar-csi.org. Accessed November 2010
  39. 39.
    Environmental Protection Agency (2012) Egrid-carbon dioxide emissions from the generation of electric power in the United States. http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html. Accessed January 2012
  40. 40.
    National Energy Technology Laboratory (2012) National carbon sequestration database and geographic information system. http://www.netl.doe.gov/technologies/carbon_seq/natcarb/index.html. Accessed January 2012
  41. 41.
    Department of Energy (2007) Alternative fuel transportation program; replacement fuel goal modification. Office of Energy Efficiency and Renewable Energy, vol 72. Department of EnergyGoogle Scholar
  42. 42.
    Pate R, Klise G, Wu B (2011) Resource demand implications for us algae biofuels production scale-up. Appl Energy 88(10):3377–3388. doi:10.1016/j.apenergy.2011.04.023 CrossRefGoogle Scholar
  43. 43.
    Weyer KM, Bush DR, Darzins A, Willson BD (2009) Theoretical maximum algal oil production. BioEnergy Res 3(2):204–213. doi:10.1007/s12155-009-9046-x CrossRefGoogle Scholar
  44. 44.
    Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88(10):3499–3506. doi:10.1016/j.apenergy.2010.12.056 CrossRefGoogle Scholar
  45. 45.
    Gardner R, Paeyton B, Cooksey K (2012) Bicarbonate trigger for inducing lipid accumulation in algal systems. USA Patent WO 2012/040698 A2, March 2012Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jason C. Quinn
    • 1
  • Kimberly B. Catton
    • 2
  • Sara Johnson
    • 3
  • Thomas H. Bradley
    • 4
  1. 1.Mechanical and Aerospace EngineeringUtah State UniversityLoganUSA
  2. 2.Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA
  3. 3.Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA
  4. 4.Mechanical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations