Skip to main content
Log in

Enhancing Lipid Production from Crude Glycerol by Newly Isolated Oleaginous Yeasts: Strain Selection, Process Optimization, and Fed-Batch Strategy

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

High lipid-accumulating yeast Trichosporonoides spathulata was newly isolated using crude glycerol as a sole carbon source. After process optimization in a 5-L bioreactor equipped with pH control and aeration system, T. spathulata produced biomass of 11.3 g/L and lipid of 5.01 g/L with a lipid content of 44.3 % using 10 % (w/v) of crude glycerol supplemented only with 0.5 % (w/v) of ammonium sulfate. A one-stage fed-batch feeding with crude glycerol and ammonium sulfate enhanced biomass and lipid production up to 17.3 and 7.25 g/L, respectively, with a lipid content of 41.9 %, while a two-stage fed-batch feeding with only crude glycerol in the second stage led to a lower biomass of 13.8 g/L but a higher lipid production of 7.78 g/L and a higher lipid content of 56.4 %. The fatty acid composition of produced lipid that is similar to plant oil indicates the high potential use of T. spathulata lipid as biodiesel feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosana MA, Vanderlea S, Gilberto FS, Sidney RM, Marcos NE, Romeu JD (2012) Used frying oil: a proper feedstock for biodiesel production? Bioenerg Res. doi:10.1007/s12155-012-9216-0

  2. Iracema AN, Sheyla SIM, Iago TDC, Solange AP, Janice ID, Carolina OS et al (2012) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg Res. doi:10.1007/s12155-012-9222-2

  3. Chris JH, Aino-Maija L, Jaakko AP, David NT (2012) Energy demands of nitrogen supply in mass cultivation of two commercially important microalgal species, Chlorella vulgaris and Dunaliella tertiolecta. Bioenerg Res. doi:10.1007/s12155-011-9175-x

  4. Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  Google Scholar 

  5. Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  PubMed  CAS  Google Scholar 

  6. Saenge C, Cheirsilp B, Suksaroge T, Bourtoom T (2011) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng 16(1):23–33

    Article  CAS  Google Scholar 

  7. Xie Q, Taweepreda W, Musikavong C, Suksaroj C (2011) Separation of oily sludge and glycerol from biodiesel processing waste by coagulation. Songklanakarin J Sci Technol 33(6):699–703

    CAS  Google Scholar 

  8. Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361

    Article  PubMed  CAS  Google Scholar 

  9. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  10. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M et al (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  11. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49

    Article  PubMed  CAS  Google Scholar 

  12. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M et al (2008) Biotechnological valorization of raw glycerol discharged after bio-diesel (fatty acid methyl ester) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71

    Article  CAS  Google Scholar 

  13. Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358

    Article  PubMed  CAS  Google Scholar 

  14. Liang Y, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586

    Article  PubMed  CAS  Google Scholar 

  15. Saenge C, Cheirsilp B, Suksaroge T, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–128

    Article  CAS  Google Scholar 

  16. Patnayak S, Sree A (2005) Screening of bacterial associates of marine sponges for single cell oil and PUFA. Letters Appl Microbiol 40:358–363

    Article  CAS  Google Scholar 

  17. Xue F, Miao J, Zhang X, Luo H, Tan T (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99:5923–5927

    Article  PubMed  CAS  Google Scholar 

  18. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  19. Jham GN, Teles FFF, Campos LG (1982) Use of aqueous HCl/MeOH as esterification reagent for analysis of fatty acids derived from soybean lipids. J Am Oil Chem Soc 59(3):132–133

    Article  CAS  Google Scholar 

  20. Kosugi Y, Takahashi K, Lopez C (1995) Large-scale immobilization of lipase from Pseudomonas fluorescens Biotype I and an application for sardine oil hydrolysis. J Am Oil Chem Soc 72:1281–1285

    Article  CAS  Google Scholar 

  21. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109:1060–1070

    Article  CAS  Google Scholar 

  22. Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070

    Article  PubMed  CAS  Google Scholar 

  23. Meesters PA, Huijberts GNM, Egglink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579

    Article  CAS  Google Scholar 

  24. Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol 46:398–402

    Article  PubMed  CAS  Google Scholar 

  25. Fakas S, Galiotou PM, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb Technol 40:1321–1327

    Article  CAS  Google Scholar 

  26. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  PubMed  CAS  Google Scholar 

  27. Bellou S, Moustogianni A, Makri A, Aggelis G (2012) Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158

    Article  PubMed  CAS  Google Scholar 

  28. Mantzouridou F, Roukas T, Kotzekidou P (2002) Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochem Eng J 10:123–135

    Article  CAS  Google Scholar 

  29. Lin J, Shen H, Tana H, Zhao X, Wu S, Hu C et al (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188

    Article  PubMed  CAS  Google Scholar 

  30. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  31. Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa–butter substitute from industrial fats. Anton Leeuw Int J Gen Mol Microbiol 80:215–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Graduate School of Prince of Songkla University. The first author thanks Palm Oil Products and Technology Research Center (POPTEC) for providing the scholarship. This work was also supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. Thanks also to Dr. Brian Hodgson for his assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamas Cheirsilp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitcha, S., Cheirsilp, B. Enhancing Lipid Production from Crude Glycerol by Newly Isolated Oleaginous Yeasts: Strain Selection, Process Optimization, and Fed-Batch Strategy. Bioenerg. Res. 6, 300–310 (2013). https://doi.org/10.1007/s12155-012-9257-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9257-4

Keywords

Navigation