Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results


Short rotation coppice (SRC) systems can play a role as feedstock for bioenergy supply contributing to EU energy and climate policy targets. A scenario depicting intensive arable crop cultivation in a homogeneous landscape (lacking habitat structures) was compared to a scenario including SRC cultivation on 20 % of arable land. A range of indicators was selected to assess the consequences of SRC on soil, water and biodiversity, using data from the Rating-SRC project (Sweden and Germany). The results of the assessment were presented using spider diagrams. Establishment and use of SRC for bioenergy has both positive and negative effects. The former include increased carbon sequestration and reduced GHG emissions as well as reduced soil erosion, groundwater nitrate and surface runoff. SRC can be used in phytoremediation and improves plant and breeding bird biodiversity (exceptions: grassland and arable land species) but should not be applied in dry areas or on soils high in toxic trace elements (exception: cadmium). The scenario-based analysis was found useful for studying the consequences of SRC cultivation at larger scales. Limitations of the approach are related to data requirements and compatibility and its restricted ability to cover spatial diversity and dynamic processes. The findings should not be generalised beyond the representativeness of the data used.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    European Council (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

  2. 2.

    Berndes G, Hansson J, Egeskog A, Johnsson F (2010) Strategies for 2nd generation biofuels in EU—co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass Bioenergy 34:227–236

    Article  CAS  Google Scholar 

  3. 3.

    Dimitriou I, Rosenqvist H, Berndes G (2011) Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenergy 35:4613–4618

    Article  Google Scholar 

  4. 4.

    Dimitriou I, Baum Ch, Baum S, Busch G, Schulz U, Köhn J, et al(2011) Quantifying environmental effects of Short Rotation Coppice (SRC) on biodiversity, soil and water. IEA Bioenergy Task43

  5. 5.

    Lovett AA, Sünnenberg GM, Richter GM, Dailey AG, Riche AB, Karp A (2009) Land use implications of increased biomass production identified by GIS-based sustainability and yield mapping for miscanthus in England. Bioenergy Res 2(1):17–28

    Article  Google Scholar 

  6. 6.

    FNR/Hajkova (2011) Pappeln mit neuen Methoden züchten. Mitteilungen, Aktuelles aus der Presse, Gesunde Pflanzen 63:205–209. doi:10.1007/s10343-011-0267-5

  7. 7.

    Fischer G, Prieler S, van Velthuizen H, Lensink SH, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part I: land productivity potentials. Biomass Bioenergy 34:159–172

    Article  Google Scholar 

  8. 8.

    Fischer G, Prieler S, van Velthuizen H, Berndes G, Faaij A, Londo M et al (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, Part II: land use scenarios. Biomass Bioenergy 34:173–187

    Article  Google Scholar 

  9. 9.

    Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:271–290

    Article  Google Scholar 

  10. 10.

    Karp A, Haughton AJ, Bohan DA, Lovett AA, Bond AJ, Dockerty T et al (2009) Perennial energy crops: implications and potential. In: Winter M, Lobley M (eds) What is land for? The food, fuel and climate change debate. Earthscan, London, pp 47–72

    Google Scholar 

  11. 11.

    Londo M, Roose M, Dekker J, de Graaf H (2004) Willow short-rotation coppice in multiple land-use systems: evaluation of four combination options in the Dutch context. Biomass Bioenergy 27:205–221

    Article  Google Scholar 

  12. 12.

    Börjesson P (1999) Environmental effects of energy crop cultivation in Sweden. I: identification and quantification. Biomass Bioenergy 16:137–154

    Article  Google Scholar 

  13. 13.

    EEA (2007) Estimating the environmentally compatible bioenergy potential from agriculture. European Environment Agency (EEA) Technical Report No. 12. Copenhagen

  14. 14.

    Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Berndes G, Fredriksson F, Börjesson P (2004) Cadmium accumulation and Salix based phytoextraction on arable land in Sweden. Agric Ecosyst Environ 103(1):207–223

    Article  CAS  Google Scholar 

  16. 16.

    Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438

    Article  Google Scholar 

  17. 17.

    Dimitriou H, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35:835–842

    Article  Google Scholar 

  18. 18.

    Dimitriou I, Aronsson P (2011) Wastewater and sewage sludge application to willows and poplars grown in lysimeters—plant response and treatment efficiency. Biomass Bioenergy 35:161–170

    Article  CAS  Google Scholar 

  19. 19.

    Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95

    Article  Google Scholar 

  20. 20.

    Weih M, Karacic A, Munkert H, Verwijst T, Diekmann M (2003) Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic Appl Ecol 4:149–156

    Article  Google Scholar 

  21. 21.

    Londo M, Dekker J, ter Kerus W (2005) Willow short-rotation coppice for energy and breeding birds: an exploration of potentials in relation to management. Biomass Bioenergy 28:281–293

    Article  Google Scholar 

  22. 22.

    Weih M (2009) Willow short rotation coppice commercially grown on agricultural land in Sweden—possibilities for improvement of biodiversity and landscape design. IEA Technical Review No. 4, 36 p. Accessed 30 Nov 2011

  23. 23.

    Baum S, Weih M, Busch G, Kroiher F, Bolte A (2009) The impact of Short Rotation Coppice plantations on phytodiversity. vTI Agric For Res 3:163–170

    Google Scholar 

  24. 24.

    Schulz U, Brauner O, Gruß H (2009) Animal diversity on short-rotation coppices—a review. vTI Agric For Res 3:171–181

    Google Scholar 

  25. 25.

    Berg A (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90:265–276

    Article  Google Scholar 

  26. 26.

    Riffell S, Verschuyl J, Miller D, Wigleys TB (2011) A meta-analysis of bird and mammal response to short-rotation woody crops. GCB Bioenergy 3:313–321

    Article  Google Scholar 

  27. 27.

    Dobson AP, Rodriguez JP, Roberts WM, Wilcove DS (1997) Geographic distribution of endangered species in the United States. Science 275:550–553. doi:10.1126/science.275.5299.550

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Berndes G, Bird N, Cowie A (2011) Bioenergy, land use change and climate change mitigation. Background Technical Report. IEA Bioenergy: ExCo:2011:04

  29. 29.

    Bond AJ, Dockerty T, Lovett A, Riche AB, Haughton AJ, Bohan BA et al (2010) Learning how to deal with values, frames and governance in sustainability appraisal. Reg Stud 45:1157–1170

    Article  Google Scholar 

  30. 30.

    Baum S, Bolte A, Weih M (2012) Higher value of short rotation coppice plantations for phytodiversity in rural landscape. GCB Bioenergy. doi:10.1111/j.1757-1707.2012.01162.x

  31. 31.

    Dimitriou I, Mola-Yudego B, Aronsson P, Eriksson J (2012) Changes in some soil parameters in short-rotation coppice plantations on agricultural land in Sweden. BioEnergy Res (this issue)

  32. 32.

    WBGU (2004) World in transition—towards sustainable energy systems. Flagship Report 2003. Earthscan, London

  33. 33.

    Fee E, Johansson DJA, Lowe J, Marbaix P, Matthews B, Meinshausen M (2010) Scientific perspectives after Copenhagen. Information reference document commissioned by the EU’s Climate Change Science Experts on behalf of EU member states

  34. 34.

    Edwards R, Mulligan D, Marelli L (2010) Indirect land use change from increased biofuels demand. JRC, Ispra

    Google Scholar 

  35. 35.

    Berndes G, Hansson J, Egeskog A, Odenberger M (2010) Bioenergy strategies for Europe: synergies and competition between the stationary and transport sectors. ELOBIO WG6 report

  36. 36.

    IPCC (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change

  37. 37.

    Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 5:431–436

    Article  CAS  Google Scholar 

  38. 38.

    Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenergy 6:63–79

    Article  CAS  Google Scholar 

  39. 39.

    Jug A, Hofmann-Schielle C, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany III. Soil ecological effects. For Ecol Manag 121:85–99

    Article  Google Scholar 

  40. 40.

    Matthews RB, Grogan P (2001) Potential C-sequestration rates under short-rotation coppiced willow and Miscanthus biomass crops: a modelling study. Asp Appl Biol 65:303–312

    Google Scholar 

  41. 41.

    Kahle P, Hildebrand E, Baum C, Boelcke B (2007) Long-term effects of short rotation forestry with willows and poplar on soil properties. Arch Agron Soil Sci 53:673–682

    Article  Google Scholar 

  42. 42.

    Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Ecol Manag 33:299–308

    Google Scholar 

  43. 43.

    Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122:325–339

    Article  CAS  Google Scholar 

  44. 44.

    Garten CT, Wullschleger SD, Classen AT (2011) Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 35:214–226

    Article  CAS  Google Scholar 

  45. 45.

    Riddell-Black DM (1994) Heavy metal uptake by fast growing willow species. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Swedish University of Agricultural Sciences, Report 50, pp 133–144

  46. 46.

    Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249(1):127–137

    Article  CAS  Google Scholar 

  47. 47.

    Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut 142(1):160–169

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced Cd-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  49. 49.

    Granel T, Robinson B, Mills T, Clothier B, Green S, Fung L (2002) Cd accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation. Aust J Soil Res 40:1331–1337

    Article  CAS  Google Scholar 

  50. 50.

    Landberg T, Greger M (2002) Interclonal variation of heavy metal interactions in Salix viminalis. Environ Toxicol Chem 21:2669–2674

    PubMed  CAS  Google Scholar 

  51. 51.

    Vyslouzilova M, Tlustos P, Szakova J (2003) Cd and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547

    Google Scholar 

  52. 52.

    Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  53. 53.

    EEA (2008) A review of the possible impact of biomass production from agriculture on water. Background paper for the conference “WFD meets CAP—looking for a consistent approach”. European Environmental Agency, Copenhagen, Denmark. Accessed 28 Oct 2011

  54. 54.

    Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of Short Rotation Coppice cultivation on water issues. LBF 59(3):197–206

    Google Scholar 

  55. 55.

    Dawson M (2007) Short-rotation coppice willow best practice guidelines. Renew Project

  56. 56.

    Busch G (2009) The impact of short rotation coppice cultivation on groundwater recharge—a spatial (planning) perspective. Landbauforschung—vTI Agric For Res 3(59):207–222

    Google Scholar 

  57. 57.

    Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauser A, Hyvo N, Nen N, Jones MB, Lanigan GJ, Mander U, Monti A, Njakou Djomo S, Valentine J, Walter K, Zegada-Lizaruzu W, Zenone T (2012) Land-use change to bioenergy production In Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4:372–391. doi:10.1111/j.1757-1707.2011.01116.x

    Article  CAS  Google Scholar 

  58. 58.

    Duelli P (1992) Mosaikkonzept und Inseltheorie in der Kulturlandschaft. Verh Ges Ökol 21:379–383 (in German with English summary)

    Google Scholar 

  59. 59.

    Duelli P (1997) Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agric Ecosyst Environ 62:81–91

    Article  Google Scholar 

  60. 60.

    Baum S, Bolte A, Weih M (2012) Short rotation coppice (SRC) plantations provide additional habitats for vascular plant species in agricultural mosaic landscapes. BioEnergy Res. doi:10.1007/s12155-012-9195-1

  61. 61.

    Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  62. 62.

    Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F et al (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781

    PubMed  Article  Google Scholar 

  63. 63.

    Hanowski JM, Niemi GJ, Christian DC (1997) Influence of within-plantation heterogeneity and surrounding landscape composition on avian communities in hybrid poplar plantations. Conserv Biol 11(4):936–944

    Article  Google Scholar 

  64. 64.

    Glutz von Blotzheim UN, Bauer KM, Bezzel E (2002) Handbuch der Vögel Mitteleuropas, Bd. 10–13 (CD-Rom). Aula Vogelzug Verlag, Wiesbaden

  65. 65.

    Südbeck P, Bauer HG, Boschert M, Boye P, Knief W (2007) Rote Liste der Brutvögel Deutschlands, 4. Fassung, 30. November 2007. The Red List of breeding birds of Germany, 4th edn, 30 November 2007.- Ber. Vogelschutz 44: 23–81

  66. 66.

    Jandl G, Baum C, Blumschein A, Leinweber P (2012) The impact of short rotation coppice on the concentrations of aliphatic soil lipids. Plant Soil 350:163–177. doi:10.1007/s11104-011-0892-x

    Article  CAS  Google Scholar 

  67. 67.

    Kahle P, Baum C, Boelcke B, Kohl J, Ulrich R (2010) Vertical distribution of soil properties under short rotation forestry in Northern Germany. J Plant Nutr Soil Sci 173:737–746

    Article  CAS  Google Scholar 

  68. 68.

    Zimmer D, Kiersch K, Baum C, Meissner R, Müller R, Jandl G et al (2011) Scale-dependent variability of As and heavy metals in a River Elbe floodplain. CLEAN - Soil Air Water 39:328–337

    Article  CAS  Google Scholar 

  69. 69.

    Baum C, Hrynkiewicz K, Leinweber P, Meissner R (2006) Heavy metal mobilization and uptake by mycorrhizal and non-mycorrhizal willows (Salix x dasyclados). J Plant Nutr Soil Sci 169:516–522

    Article  CAS  Google Scholar 

  70. 70.

    Baum C, Leinweber P, Weih M, Lamersdorf N, Dimitriou I (2009) Effects of short rotation coppice with willows and poplar on soil ecology (review article). Landbauforschung—vTI Agric For Res 3:183–196

    Google Scholar 

  71. 71.

    Dimitriou I, Aronsson P, Mola-Yudego (2012) Impact of commercial willow Short Rotation Coppice fields on water quality. BioEnergy Res (this issue)

  72. 72.

    Schmidt-Walter P, Lamersdorf N (2012) Biomass production with willow and poplar short rotation coppices on sensitive areas—the impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany. BioEnergy Res (this issue)

  73. 73.

    Sage R, Cunningham M, Boatman N (2006) Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148(1):184–197

    Article  Google Scholar 

  74. 74.

    Dhondt AA, Sydenstricker KA (2000) Birds breeding in short-rotation woody crops in upstate New York: 1998–2000. Proceedings of the Short-Rotation Woody Crops Operations Working Group, 3rd Conference, Syracus, pp. 137–141

  75. 75.

    Göranson G (1994) Bird faunas of cultivated energy shrub forests at different heights. Biomass Bioenergy 6:49–52

    Article  Google Scholar 

  76. 76.

    Gruss H, Schulz U (2008) Entwicklung der Brutvogelfauna auf einer Energieholzfläche über den Zeitraum von 13 Jahren. Arch Forstwes Landschaftsökol 42(2):75–82 (in German with English summary)

    Google Scholar 

  77. 77.

    Gruss H, Schulz U (2011) Brutvogelfauna auf Kurzumtriebsplantagen—Besiedlung und Habitateignung verschiedener Strukturtypen. Z Naturschutz Landschaftsplanung 43(7):197–204 (in German with English summary)

    Google Scholar 

  78. 78.

    Sage R, Robertson PA (1996) Factors affecting songbird communities using new short rotation coppice habitats in spring. Bird Study 43(2):201–213

    Article  Google Scholar 

  79. 79.

    Jedicke E (1995) Naturschutzfachliche Bewertung von Holzfeldern—Schnellwachsende Weichhölzer im Kurzumtrieb, untersucht am Beispiel der Avifauna. Mitt. aus der NNA (1):109–119

  80. 80.

    Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collaps of Europe´s farmland bird populations. Proc Soc Lond B 286:25–29

    Article  Google Scholar 

  81. 81.

    Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agric Ecosyst Environ 116:189–196

    Article  Google Scholar 

  82. 82.

    Brauner O, Schulz U (2011) Laufkäfer auf Energieholzplantagen und angrenzenden Vornutzungsflächen (Carabidae)—Untersuchungen in Sachsen und Brandenburg. Ent. Bl. (107): 31–64 (in German with English summary)

  83. 83.

    GBEP (2011) GBEP sustainability indicators for bioenergy. Accessed 25 Nov 2011

  84. 84.

    Roundtable on Sustainable Biomass (2011) Accessed 6 Dec 2011

Download references

Author information



Corresponding author

Correspondence to Hans Langeveld.

Appendix: International Sustainability Indicators

Appendix: International Sustainability Indicators

Table 3 GBEP indicators
Table 4 RSB indicators

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langeveld, H., Quist-Wessel, F., Dimitriou, I. et al. Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results. Bioenerg. Res. 5, 621–635 (2012).

Download citation


  • Biodiversity
  • Bioenergy
  • Short rotation coppice
  • Soil quality
  • Sustainability indicators
  • Water quality