BioEnergy Research

, Volume 6, Issue 1, pp 1–13 | Cite as

Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria

  • Iracema Andrade NascimentoEmail author
  • Sheyla Santa Izabel Marques
  • Iago Teles Dominguez Cabanelas
  • Solange Andrade Pereira
  • Janice Isabel Druzian
  • Carolina Oliveira de Souza
  • Daniele Vital Vich
  • Gilson Correia de Carvalho
  • Maurício Andrade Nascimento


The viability of algae-based biodiesel industry depends on the selection of adequate strains in regard to profitable yields and oil quality. This work aimed to bioprospecting and screening 12 microalgae strains by applying, as selective criteria, the volumetric lipid productivity and the fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among strains from 22.61 to 204.91 mg l−1 day−1. The highest lipid yields were observed for Chlorella (204.91 mg l−1 day1) and Botryococcus strains (112.43 and 98.00 mg l−1 day−1 for Botryococcus braunii and Botryococcus terribilis, respectively). Cluster and principal components analysis analysis applied to fatty acid methyl esters (FAME) profiles discriminated three different microalgae groups according to their potential for biodiesel production. Kirchneriella lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and Ankistrodesmus falcatus showed the highest levels of polyunsaturated FAME, which incurs in the production of biodiesels with the lowest (42.47–50.52) cetane number (CN), the highest (101.33–136.97) iodine values (IV), and the lowest oxidation stability. The higher levels of saturated FAME in the oils of Chlamydomonas sp. and Scenedesmus obliquus indicated them as source of biodiesel with higher oxidation stability, higher CN (63.63–64.94), and lower IV (27.34–35.28). The third group, except for the Trebouxyophyceae strains that appeared in isolation, are composed by microalgae that generate biodiesel of intermediate values for CN, IV, and oxidation stability, related to their levels of saturated and monosaturated lipids. Thus, in this research, FAME profiling suggested that the best approach for generating a microalgae-biodiesel of top quality is by mixing the oils of distinct cell cultures.


Biodiesel quality Fatty acid profiles Lipid productivity Microalgae bioprospection Microalgae selection for biodiesel production 



Brazilian National Agency for Petroleum, Natural Gas and Biofuels


American Society for Testing and Materials


Cold filter plugging point


Cetane number


Degree of unsaturation


Fatty acids


Fatty acid methyl esters


Greenhouse gases


Iodine value


Total lipids content


Long-chain saturated factor


Volumetric lipid productivity


Mega Joule


Monounsaturated fatty acids


Optical density


Oxidative stability


Biomass productivity


Polyunsaturated fatty acids


Saponification value





This work benefited from the support from the National Council for the Scientific and Technological Development (CNPQ)/Science and Technology Ministry, Brazil (processes 574712/2008-9 and 551134/2010-0).


  1. 1.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  2. 2.
    Altieri MA (2009) The ecological impacts of large-scale agro fuel monocultures’ production systems in the Americas. B Sc Technol Soc 29(3):236–244CrossRefGoogle Scholar
  3. 3.
    Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Tech. Rep. NREL/SR-580-24089, U.S. Department of Energy and U.S. Department of AgricultureGoogle Scholar
  4. 4.
    Rajagopal D, Zilberman D (2007) Review of the environmental, economic and policy aspects of biofuels. Policy research working paper 4341. The World Bank. 107 pp. Available at Accessed September 2011
  5. 5.
    Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energy Rev 10:248–268CrossRefGoogle Scholar
  6. 6.
    Wang WG, Lyons DW, Clark NN, Gautam M, Norton PM (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Technol 34:933–939CrossRefGoogle Scholar
  7. 7.
    Tyson KS (2001) Biodiesel Handling and Use Guidelines. Report NREL/TP 580–30004. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  8. 8.
    Gouveia L, Oliveira AC (2009) Microalgae as raw material for biofuels production. J Ind Microbiol Biotech 36:269–274CrossRefGoogle Scholar
  9. 9.
    Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610CrossRefGoogle Scholar
  10. 10.
    Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714CrossRefGoogle Scholar
  11. 11.
    Balat M (2011) Potential alternatives to edible oils for biodiesel production—a review of current work. Energy Convers Manage 52:1479–1492CrossRefGoogle Scholar
  12. 12.
    Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manage J 5(3):261–274Google Scholar
  13. 13.
    Chisti Y (2007) Biodiesel from microalgae. Biotecnol Adv 25:294–306CrossRefGoogle Scholar
  14. 14.
    Hu G, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  15. 15.
    Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170CrossRefGoogle Scholar
  16. 16.
    Wijffels RH (2008) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31PubMedCrossRefGoogle Scholar
  17. 17.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell MN (2008) Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7Google Scholar
  19. 19.
    Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70PubMedCrossRefGoogle Scholar
  20. 20.
    Demirbas A (2009) Production of biodiesel from algae oils. Energy Source Part A 31:163–168CrossRefGoogle Scholar
  21. 21.
    Demirbas A (2010) Microalgae as feedstock for biodiesel. Energy Edu Sci Technol Part A 26:31–43Google Scholar
  22. 22.
    Xu L, Derk WF, Brilman W, Withag JAM, Brem G, Kersten S (2011) Assessment of a dry and wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102:5113–5122PubMedCrossRefGoogle Scholar
  23. 23.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799PubMedCrossRefGoogle Scholar
  24. 24.
    Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S et al (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122PubMedCrossRefGoogle Scholar
  25. 25.
    Ras M, Lardon L, Bruno S, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206PubMedCrossRefGoogle Scholar
  26. 26.
    Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity and fatty-acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107(2):245–257PubMedCrossRefGoogle Scholar
  27. 27.
    Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energ Fuels 23:5448–5453CrossRefGoogle Scholar
  28. 28.
    Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussugnug J, Posten C et al (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43CrossRefGoogle Scholar
  29. 29.
    Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110PubMedCrossRefGoogle Scholar
  30. 30.
    Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  31. 31.
    Dayananda C, Sarada R, Ushua RM, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg 31:87–93CrossRefGoogle Scholar
  32. 32.
    Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, p 566Google Scholar
  33. 33.
    Rodolfi L, Zitelli GC, Bassi N, Padovani G, Biondi N, Bonini G et al (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  34. 34.
    Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595CrossRefGoogle Scholar
  35. 35.
    Ranga Rao AR, Sarada R, Ravishankar GA (2007) Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17:414–419PubMedGoogle Scholar
  36. 36.
    Freeman NFT, Lindgren YCN, Nichols AV (1957) Serum lipid analysis by chromatography and infrared spectrophotometry. J Biol Chem 277:449–464Google Scholar
  37. 37.
    GraphPad Software (1997) Instant guide to choosing and interpreting statistical tests. GraphPad Software Inc., San Diego, CA.Google Scholar
  38. 38.
    Joseph JD, Ackman RG (1992) Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters: collaborative study. J AOAC Intern 75:488–506Google Scholar
  39. 39.
    Knothe GH (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  40. 40.
    Knothe GH (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677CrossRefGoogle Scholar
  41. 41.
    Ramos MJ, Fernández CM, Casas A, Rodriguez L, Pérez A (2009) Influence of fatty acids composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268PubMedCrossRefGoogle Scholar
  42. 42.
    RANP (2008) Resolution from Brazilian National Agency for Petroleum, Natural Gas and Biofuels (2008) Resolução ANP nº 7, de 19.3.2008- DOU 20.3.2008. Available at Access: September 2011.
  43. 43.
    Krisnangkura KA (1986) A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:552–553CrossRefGoogle Scholar
  44. 44.
    Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403CrossRefGoogle Scholar
  45. 45.
    Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2011). VEGAN: Community ecology package. R package version 2.1-3/r1935. Available at
  46. 46.
    ter Braak CJF (1988) CANOCO—an extension of DECORANA to analyze species–environment relationships. Vegetation 75:159–160Google Scholar
  47. 47.
    ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  48. 48.
    Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279PubMedCrossRefGoogle Scholar
  49. 49.
    Metzger P, Largeau C (2005) Botryococcus braunii a rich source for hydrocarbons and related ether lipids. App Microbiol Biot 6:486–496CrossRefGoogle Scholar
  50. 50.
    Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrphic growth conditions. Biotechnol Lett 3:1043–1049CrossRefGoogle Scholar
  51. 51.
    De-Bashan LE, Antoun H, Bashan Y (2005) Cultivation factors and population size control uptake of nitrogen by the microalgae Chlorella vulgaris, when interacting with the microalgae growth-promoting bacterium Azospirillum brasiliensis. FEMS Microbiol Ecol 54:197–203PubMedCrossRefGoogle Scholar
  52. 52.
    Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC (2009) Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Mol Sci 10:518–532PubMedCrossRefGoogle Scholar
  53. 53.
    Ge Y, Liu J, Tian G (2011) Growth characteristics of Botryococcus braunii 765 under high CO2 Concentration in photobioreactor. Bioresour Technol 102:130–134PubMedCrossRefGoogle Scholar
  54. 54.
    Zhila NO, Kalacheva GS, Volova TG (2001) Structure of hydrocarbons synthesized by the alga Botryococcus isolated from Lake Shira. Doklady Biolog Sci 378:265–269CrossRefGoogle Scholar
  55. 55.
    Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726PubMedCrossRefGoogle Scholar
  56. 56.
    Vanitha A, Narayan K, Murphy NC, Ravishankar GA (2007) Comparative study of lipid composition of two halotolerant alga Dunaliella bardawil and Dunaliella salina. Int J Food Sci Nutr 58:373–382PubMedCrossRefGoogle Scholar
  57. 57.
    Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441PubMedCrossRefGoogle Scholar
  58. 58.
    Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Ren Sust Energ Rev 4:111–133CrossRefGoogle Scholar
  59. 59.
    Pischinger GM, Falcon AM, Siekmann RW, Fernandes FR (1982) Methylesters of plant oils as diesels fuels, either straight or in blends. Vegetable oil fuels, ASAE publication 4–8. Amer Soc Agric Engrs, St. Joseph, MIGoogle Scholar
  60. 60.
    Schwab AW, Bagby MO, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378CrossRefGoogle Scholar
  61. 61.
    Mittelbach M, Remschmidt C (2004) In: Mittelbach M (ed) Biodiesel: the comprehensive handbook. Karl-Franzens University, GrazGoogle Scholar
  62. 62.
    Wu M, Wu G, Han L, Wang J (2005) Low temperature fluidity of biodiesel fuel prepared from edible vegetable oil. Pet Process Petrochem 35:57–60Google Scholar
  63. 63.
    Harrington KJ (1986) Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9:1–17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Iracema Andrade Nascimento
    • 1
    • 5
    Email author
  • Sheyla Santa Izabel Marques
    • 1
  • Iago Teles Dominguez Cabanelas
    • 1
  • Solange Andrade Pereira
    • 1
  • Janice Isabel Druzian
    • 2
  • Carolina Oliveira de Souza
    • 2
  • Daniele Vital Vich
    • 1
  • Gilson Correia de Carvalho
    • 3
  • Maurício Andrade Nascimento
    • 4
  1. 1.Institute of BiologyFederal University of BahiaSalvadorBrazil
  2. 2.Institute of PharmacyFederal University of BahiaSalvadorBrazil
  3. 3.Health Sciences InstituteFederal University of BahiaSalvadorBrazil
  4. 4.Polytechnic InstituteFederal University of BahiaSalvadorBrazil
  5. 5.SalvadorBrazil

Personalised recommendations