BioEnergy Research

, Volume 5, Issue 1, pp 49–60 | Cite as

Current Large-Scale US Biofuel Potential from Microalgae Cultivated in Photobioreactors

  • Jason C. Quinn
  • Kimberly Catton
  • Nicholas Wagner
  • Thomas H. Bradley


Current assessments of the commercial viability and productivity potential of microalgae biofuels have been forced to extrapolate small-scale research data. The resulting analyses are not representative of microalgae cultivation and processing at industrial scale. To more accurately assess the current near-term realizable, large-scale microalgae productivity potential in the USA, this paper presents a model of microalgae growth derived from industrial-scale outdoor photobioreactor growth data. This model is combined with thermal models of the photobioreactor system and 15 years of hourly historical weather data from 864 locations in the USA to more accurately assess the current productivity potential of microalgae. The resulting lipid productivity potential of Nannochloropsis is presented in the form of a map that incorporates various land availability models to illustrate the near-term feasible cultivation locations and corresponding productivity potentials for the USA. The discussion focuses on a comparison of model results with productivity potentials currently reported in literature, an assessment demonstrating the scale of Department of Energy 2030 alternative fuel goals, and a critical comparison of productivity potential in several key regions of the USA.


Biofuels GIS Microalgae Model Productivity potential 



Photosynthetic active radiation


Photon flux density


Geographic information system




Open raceway pond


Department of Energy


National Land Cover Database



Specific heat of water (kJ kg−1 K−1)


Activation energy carboxylation Rubisco (J mol−1)


Solar energy reaching the bottom (W m−2)


Solar energy reaching node n (W m−2)


Solar energy reaching the surface (W m−2)


Convection coefficient (W m−2 K−1)


Net radiation coefficient with the sky (W m−2 K−1)


Thermal conductivity of water (W m−1 K−1)


Distance between nodes (m)


Total mass represented by node n (kg)


Energy stored/released by ground (W m−2)


Universal gas constant (J K−1 mol−1)


Temperature at node 1 (K)


Temperature of the ambient (K)


Temperature at node n (K)

Tn − 1

Temperature at node n minus 1 (K)

Tn + 1

Temperature at node n plus 1 (K)


Optimum microaglae growth temperature (K)


Temperature of the sky (K)


Temperature at the surface (K)


Temperature of microalgae culture (K)


Time (s)


Temperature efficiency factor

Supplementary material

12155_2011_9165_MOESM1_ESM.pdf (1.1 mb)
ESM 1(PDF 1.14 mb)


  1. 1.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43CrossRefGoogle Scholar
  2. 2.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799PubMedCrossRefGoogle Scholar
  3. 3.
    Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980PubMedCrossRefGoogle Scholar
  4. 4.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  5. 5.
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820PubMedGoogle Scholar
  6. 6.
    Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56PubMedCrossRefGoogle Scholar
  8. 8.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306PubMedCrossRefGoogle Scholar
  9. 9.
    Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531CrossRefGoogle Scholar
  10. 10.
    Maxwell EL, Folger AG, Hogg SE (1985) Resource evaluation and site selection for microalgae production systems. Solar Energy Research Institute: SERI/TR-215-2484Google Scholar
  11. 11.
    Magnuson J (2010) Algal biofuels. Paper presented at the Washington State Bioenergy Research Symposium, Seattle, WA, 8 November 2010Google Scholar
  12. 12.
    Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:W00H04CrossRefGoogle Scholar
  13. 13.
    James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol 17(7):895–906PubMedCrossRefGoogle Scholar
  14. 14.
    Quinn J, de Winter L, Bradley T (2011) Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol 102(8):5083–5092PubMedCrossRefGoogle Scholar
  15. 15.
    Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) Microalgae as a source of liquid fuels. Final technical report, US Department of Energy, Office of Research: DOE/ER/30014-TRGoogle Scholar
  16. 16.
    Lansford R, Hernandez J, Enis P, Truby D, Mapel C (1990) Evaluation of available saline water resources in New Mexico for the production of microalgae. Solar Energy Research Institute: SERI/TR-232-3597Google Scholar
  17. 17.
    Muhs J, Viamajala S, Heydorn B, Edwards M, Hu Q, Hobbs R et al (2009) A summary of opportunities, challenges, and research needs: algae biofuels & carbon recycling. Cited 28 Jan 2011
  18. 18.
    Molineaux B, Lachal B, Guisan O (1994) Thermal analysis of five outdoor swimming pools heated by unglazed solar collectors. Sol Energy 53(1):21–26CrossRefGoogle Scholar
  19. 19.
    Szeicz G, Mcmonagle RC (1983) The heat balance of urban swimming pools. Sol Energy 30(3):247–259CrossRefGoogle Scholar
  20. 20.
    Weyer-Geigel KM (2008) Heat-balance model and thermal analysis of an algae growth system for biofuel. Thesis, Colorado State UniversityGoogle Scholar
  21. 21.
    Sartori E (2000) A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Sol Energy 68(1):77–89CrossRefGoogle Scholar
  22. 22.
    Duffie JA, Beckman WA (2006) Solar engineering of thermal processes. Wiley, HobokenGoogle Scholar
  23. 23.
    Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29(6):729–739CrossRefGoogle Scholar
  24. 24.
    Macintyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38(1):17–38CrossRefGoogle Scholar
  25. 25.
    Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451CrossRefGoogle Scholar
  26. 26.
    Goldman JC (1979) Outdoor algal mass-cultures. 2. Photosynthetic yield limitations. Water Res 13(2):119–136CrossRefGoogle Scholar
  27. 27.
    Furuya K, Hasegawa O, Yoshikawa T, Taguchi S (1998) Photosynthesis–irradiance relationship of phytoplankton and primary production in the vicinity of Kuroshio warm core ring in spring. J Oceanogr 54:545–552CrossRefGoogle Scholar
  28. 28.
    Harding LW, Prezelin BB, Sweeney BM, Cox JL (1982) Diel oscillations of the photosynthesis–irradiance (P–I) relationship in natural assemblages of phytoplankton. Mar Biol 67(2):167–178CrossRefGoogle Scholar
  29. 29.
    Ihnken S, Eggert A, Beardall J (2010) Exposure times in rapid light curves affect photosynthetic parameters in algae. Aquat Bot 93(3):185–194CrossRefGoogle Scholar
  30. 30.
    Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200(1–2):189–192CrossRefGoogle Scholar
  31. 31.
    Geider RJ, Macintyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecol Prog Ser 148(1–3):187–200CrossRefGoogle Scholar
  32. 32.
    Wilcox S (2007) 1991–2005 national solar radiation database. Cited 1 Oct 2010
  33. 33.
    Arcgis (2010) World topographic map. Cited 1 Nov 2010
  34. 34.
    U.S. Geological Survey (2001) National land cover database (NLCD 2001). Cited 15 Nov 2010
  35. 35.
    Office of E-Government & Information (2010) U.S. Map and data. Cited November 2010
  36. 36.
    U.S. Department of Energy (2010) National algal biofuels technology roadmap. Office of Energy Efficiency and Renewable Energy, Biomass Program, U.S. Department of Energy, Washington, DCGoogle Scholar
  37. 37.
    Consultative Group on International Agricultural Research (2010) CGIAR CSI. Cited November 2010
  38. 38.
    Department of Energy (2007) Alternative fuel transportation program; replacement fuel goal modification. Office of Energy Efficiency and Renewable Energy. Cited 25 Jan 2011
  39. 39.
    Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefining-Biofpr 3(4):431–440CrossRefGoogle Scholar
  40. 40.
    Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286PubMedCrossRefGoogle Scholar
  41. 41.
    Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819PubMedCrossRefGoogle Scholar
  42. 42.
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US department of energy’s aquatic species program: biodiesel from algae. NREL report: TP-580-24190Google Scholar
  43. 43.
    Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12:573–608CrossRefGoogle Scholar
  44. 44.
    Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352CrossRefGoogle Scholar
  45. 45.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131PubMedCrossRefGoogle Scholar
  46. 46.
    Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112PubMedCrossRefGoogle Scholar
  47. 47.
    Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1–4):399–404CrossRefGoogle Scholar
  48. 48.
    Williams PJL, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590CrossRefGoogle Scholar
  49. 49.
    Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17(1):33–39CrossRefGoogle Scholar
  50. 50.
    Yeang K (2008) Biofuel from algae. Archit Des 78(3):118–119Google Scholar
  51. 51.
    Hazlebeck D (2010) General atomics alternative fuels. Paper presented at the Pacific Rim Summit on Industrial Biotechnology & Bioenergy, Honolulu, HI, 11–14 December 2010Google Scholar
  52. 52.
    Berner K (2010) Commercializing algal biofuels. Paper presented at the Pacific Rim Summit on Industrial Biotechnology & Bioenergy, Honolulu, HI, 11–14 December 2010Google Scholar
  53. 53.
    Cyanotech (2007) Welcome to Cyanotech. Cited April 2011
  54. 54.
    U.S. Department of Energy (2008) Memorandum of understanding between the state of Hawaii and the U.S. Department of Energy. Energy Efficiency and Renewable Energy, Washington, DCGoogle Scholar
  55. 55.
    Lingle L, Lau C, Liu T, Alm R, Awakuni C (2008) Energy agreement among the state of Hawaii, Division of Consumer Advocacy of the Department of Commerce and Consumer Affairs, and the Hawaiian Electric Companies. Hawaii Clean Energy Initiative, HawaiiGoogle Scholar
  56. 56.
    U.S. Energy Information Administration (2009) Total petroleum consumption estimates. Cited April 2011

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Jason C. Quinn
    • 1
  • Kimberly Catton
    • 2
  • Nicholas Wagner
    • 3
  • Thomas H. Bradley
    • 3
  1. 1.Mechanical EngineeringColorado State UniversityFort CollinsUSA
  2. 2.Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA
  3. 3.Mechanical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations