BioEnergy Research

, Volume 1, Issue 3–4, pp 205–214 | Cite as

Effects of Two-Stage Dilute Acid Pretreatment on the Structure and Composition of Lignin and Cellulose in Loblolly Pine

  • Poulomi Sannigrahi
  • Arthur J. RagauskasEmail author
  • Stephen J. Miller


A standard two-step dilute sulfuric acid pretreatment was performed on Loblolly pine to enhance the overall efficiency of enzymatic deconstruction of woody biomass to monomeric sugars. The structure of milled wood lignin and cellulose isolated from the untreated and acid-treated biomass was studied in detail. Solid-state 13C NMR spectroscopy coupled with line shape analyses has been employed to elucidate cellulose crystallinity and ultrastructure. The results indicate an increase in the degree of crystallinity and reduced relative proportion of less ordered cellulose allomorphs following the acid pretreatment. This increase was attributed to a preferential degradation of amorphous cellulose and less ordered crystalline forms during the high temperature pretreatment. Milled wood lignin structural elucidation by quantitative 13C and 31P NMR reveals an increase in the degree of condensation of lignin due to the pretreatment. The increase in degree of condensation is accompanied by a decrease in β-O-4 linkages which were fragmented and recondensed during the high temperature acid-catalyzed reactions.


Bioethanol Loblolly pine Milled wood lignin Cellulose structure 13C and 31P NMR spectroscopy Acid pretreatment 



Cross polarization/ Magic angle spinning


Crystallinity index


Dry matter


Milled wood lignin


Nuclear magnetic resonance


Scanning electron microscope



The authors wish to acknowledge financial support from Chevron Technology Ventures for these studies.


  1. 1.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628PubMedCrossRefGoogle Scholar
  2. 2.
    Mabee WA, Gregg DJ, Arato C et al (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129–132:55–70PubMedCrossRefGoogle Scholar
  3. 3.
    Ragauskas AJ, Nagy M, Kim DH et al (2006) From wood to fuels, integrating biofuels and pulp production. Ind Biotechnol 2:55–65CrossRefGoogle Scholar
  4. 4.
    Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  5. 5.
    Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Qium Nova 26:863–871Google Scholar
  6. 6.
    Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824PubMedCrossRefGoogle Scholar
  7. 7.
    Pu Y, Zhang D, Singh PM et al (2008) The new forestry biofuels sector. Biofuels, Bioproducts, Biorefining 2:58–73CrossRefGoogle Scholar
  8. 8.
    Davis MF, Ishizawa C, Jeoh T et al (2007) Chemical and physical properties of pretreated biomass that affect enzyme accessibility and digestibility. in 233rd ACS National Meeting. 2007. American Chemical Society, Chicago, ILGoogle Scholar
  9. 9.
    Willfor S, Sundberg A, Hemming J et al (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–258CrossRefGoogle Scholar
  10. 10.
    Willfor S, Sundberg A, Pranovich A et al (2005) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617CrossRefGoogle Scholar
  11. 11.
    Sjostrom E (1993) Wood chemistry. Academic, San DiegoGoogle Scholar
  12. 12.
    Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285PubMedCrossRefGoogle Scholar
  13. 13.
    Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRefGoogle Scholar
  14. 14.
    Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  15. 15.
    Larsson PT, Westermark U, Iverson T (1995) Determination of the cellulose I alpha allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydr Res 278:339–343CrossRefGoogle Scholar
  16. 16.
    Larsson PT, Wickholm K, Iverson T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25CrossRefGoogle Scholar
  17. 17.
    Larsson S, Palmqvist E, Hagerdal-Hahn B et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159CrossRefGoogle Scholar
  18. 18.
    Lennholm H, Larsson PT, Iverson T (1994) Determination of cellulose I alpha and I beta in lignicellulosic materials. Carbohydr Res 261:119–131CrossRefGoogle Scholar
  19. 19.
    Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analyses of cellulase treated bleached softwood kraft pulp. Carbohydr Res 341:591–597PubMedCrossRefGoogle Scholar
  20. 20.
    Wickholm K, Hult E-L, Larsson PT et al (2001) Quantification of cellulosic forms in complex cellulosic materials: a chemometric model. Cellulose 8:139–148CrossRefGoogle Scholar
  21. 21.
    Wickholm K, Larsson PT, Iverson T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  22. 22.
    Converse AO (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB, Wallingford, pp 93–106Google Scholar
  23. 23.
    Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCrossRefGoogle Scholar
  24. 24.
    Mansfield SD, Mooney C, Saddler JN (1999) Substrates and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Progr 15:804–816CrossRefGoogle Scholar
  25. 25.
    Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRefGoogle Scholar
  26. 26.
    Ohmine K, Ooshima H, Harano Y (1983) Kinetic study of enzymatic hydrolysis of cellulose by cellulase from Trichoderma viride. Biotechnol Bioeng 25:2041–2053PubMedCrossRefGoogle Scholar
  27. 27.
    Puls J, Wood TM (1991) The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresour Technol 36:15–19CrossRefGoogle Scholar
  28. 28.
    Sinitsyn AP, Mitkevich OV, Gusakov AV (1989) Decrease in reactivity and change of physico-chemical parameters of cellulose in the course of enzymatic hydrolysis. Carbohydr Polym 10:1–14CrossRefGoogle Scholar
  29. 29.
    Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen QA, Tucker MP, Keller FA (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576PubMedCrossRefGoogle Scholar
  31. 31.
    Tengborg C, Galbe M, Zacchi G (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol Prog 17:110–117PubMedCrossRefGoogle Scholar
  32. 32.
    Boussaid A, Robinson J, Cai Y et al (1999) Fermentability of the hemicellulose derived sugars from steam exploded softwood (Douglas-Fir). Biotechnol Bioeng 64:284–289PubMedCrossRefGoogle Scholar
  33. 33.
    Soderstrom J, Pilcher L, Galbe M et al (2002) Two-step pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol 98–100:5–21PubMedCrossRefGoogle Scholar
  34. 34.
    Wu MM, Chang K, Gregg DJ et al (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77–79:47–54CrossRefGoogle Scholar
  35. 35.
    Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl BiochemBiotechnol 121–124:1119–1132CrossRefGoogle Scholar
  36. 36.
    Soderstrom J, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25:187–202CrossRefGoogle Scholar
  37. 37.
    Soderstrom J, Pilcher L, Galbe M et al (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475–486CrossRefGoogle Scholar
  38. 38.
    Pan X, Gilkes N, Kadla JF et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861PubMedCrossRefGoogle Scholar
  39. 39.
    Pan X, Xie D, Yu R et al (2007) Biorefining of Lodgepole pine killed by mountain pine beetle using ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617CrossRefGoogle Scholar
  40. 40.
    Soderstrom J, Galbe M, Zacchi G (2004) Effect of washing on yield in one and two step steam pretreatment of softwood for production of ethanol. Biotechnol Prog 20:744–749PubMedCrossRefGoogle Scholar
  41. 41.
    Frederick WJ, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, Iisa K (2008) Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresour Technol 99(11):5051–5057PubMedGoogle Scholar
  42. 42.
    Lin S, Dence C (eds) (1992) Methods in lignin chemistry. Springer series in wood science. Springer, Berlin, 578 ppGoogle Scholar
  43. 43.
    Sjostrom E, Alen R (1998) Analytical methods in wood chemistry, pulping and paper making. In: Timmel TE (ed) Springer series in wood science. Springer, Berlin, p 315Google Scholar
  44. 44.
    Hult E-L, Larsson PT, Iverson TA (2000) Comparative CP/MAS 13C NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRefGoogle Scholar
  45. 45.
    Guerra A, Mendonca R, Ferraz A et al (2004) Structural characterization of lignin during Pinus taeda wood treatment with Ceriporiopsis subvermispora. Appl Environ Microbiol 70:4073–4078PubMedCrossRefGoogle Scholar
  46. 46.
    Holtman KM, Cheng H-M, Jameel H et al (2006) Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol 26:21–34CrossRefGoogle Scholar
  47. 47.
    Robert D (1992) Carbon-13 nuclear magnetic resonance spectroscopy. In: Lin S, Dence C (eds) Methods in lignin chemistry. Springer, BerlinGoogle Scholar
  48. 48.
    Granata A, Argyropoulos DS (1995) 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem 43:1538–1544CrossRefGoogle Scholar
  49. 49.
    Li J, Henriksson G, Gellerstedt G (2005) Carbohydrate reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol 175:175–187CrossRefGoogle Scholar
  50. 50.
    Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068PubMedCrossRefGoogle Scholar
  51. 51.
    Ibbett RN, Domvoglou D, Fasching M (2007) Characterization of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution carbon-13 solid-state NMR. Polymer 48:1287–1296CrossRefGoogle Scholar
  52. 52.
    Hult E-L, Liitia T, Maunu SL, Hortling B, Iversen T (2002) A CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibers. Carbohydr Polym 49:231–234CrossRefGoogle Scholar
  53. 53.
    Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iverson T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid-state Nucl Magn Reson 15:31–40PubMedCrossRefGoogle Scholar
  54. 54.
    Bergensträhle M, Wohlert J, Larsson PT, Mazeau K, Berglund L (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595PubMedCrossRefGoogle Scholar
  55. 55.
    Holtman KM, Kadla JF (2004) A solution NMR study of the similarities between MWL and CEL. J Agric Food Chem 52:720–726PubMedCrossRefGoogle Scholar
  56. 56.
    Zawadski M, Ragauskas AJ (2001) N-hydroxyl compounds as new internal standards for the 31P NMR determination of lignin hydroxyl functional groups. Holzforschung 55:283–285CrossRefGoogle Scholar
  57. 57.
    Josefsson T, Lennholm H, Gellerstedt G (2001) Changes in cellulose supramolecular structure and molecular weight distribution during steam explosion of aspen wood. Cellulose 8:289–296CrossRefGoogle Scholar
  58. 58.
    Debzi EM, Chanzy H, Sugiyama J et al (1991) The I-alpha to I-beta transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822CrossRefGoogle Scholar
  59. 59.
    Lindgren T, Edlund U, Iverson T (1995) A multivariate characterization of crystal transformations of cellulose. Cellulose 2:273–288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Poulomi Sannigrahi
    • 1
  • Arthur J. Ragauskas
    • 1
    Email author
  • Stephen J. Miller
    • 2
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Chevron Energy Technology CompanyRichmondUSA

Personalised recommendations