Skip to main content

Pongamia pinnata: An Untapped Resource for the Biofuels Industry of the Future


Pongamia pinnata (L.) Pierre is a fast-growing leguminous tree with the potential for high oil seed production and the added benefit of the ability to grow on marginal land. These properties support the suitability of this plant for large-scale vegetable oil production required by a sustainable biodiesel industry. The future success of P. pinnata as a sustainable source of feedstock for the biofuels industry is dependent on an extensive knowledge of the genetics, physiology and propagation of this legume. In particular, research should be targeted to maximizing plant growth as it relates to oil biosynthesis. This review assesses and integrates the biological, chemical and genetic attributes of the plant, providing the basis for future research into Pongamia’s role in an emerging industry.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2


  1. 1.

    Acharya L, Mukherjee AK, Panda PC (2004) Genome relationship among nine species of Millettieae (Leguminosae: Papilionoideae) based on random amplified polymorphic DNA (RAPD). Z Naturforsch C 59:868–873

    PubMed  CAS  Google Scholar 

  2. 2.

    Ahmad S, Ashraf SM, Naqvi F et al (2003) A polyesteramide from Pongamia glabra oil for biologically safe anticorrosive coating. Prog Org Coat 47:95–102

    Article  CAS  Google Scholar 

  3. 3.

    Ahmad G, Yadav PP, Maurya R (2004) Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 65:921–924

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Alam S, Sarkar Z, Islam A (2004) Synthesis and studies of antibacterial activity of pongaglabol. J Chem Sci 116:29–32

    Article  CAS  Google Scholar 

  5. 5.

    Ansari SA, Singh S, Rani A (2004) Inorganic salts influence IAA ionization and adventitious rhizogenesis in Pongamia pinnata. J Plant Physiol 161:117–120

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Arathi HS, Ganeshaiah KN, Shaanker RU et al (1999) Seed abortion in Pongamia pinnata (Fabaceae). Am J Bot 86:659–662

    PubMed  Article  Google Scholar 

  7. 7.

    Atchison E (1951) Studies in the Leguminosae VI. Chromosome numbers among tropical woody species. Am J Bot 38:538–546

    Article  Google Scholar 

  8. 8.

    Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302

    Article  CAS  Google Scholar 

  9. 9.

    Bandivdekar AH, Moodbidri SB (2002) Spermicidal activity of seed oil of Pongamia glabra. Arch Androl 48:9–13

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nature Protocols 2:2649–2654

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) A fast and sensitive silver-staining for DNA in polyacrylamide gels. Anal Biochem 196:80–83

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Bottoms T (2000) Bama country—aboriginal homelands. In: McDonald G, Lane M (eds) Securing the wet tropics? Federation Press, Leichardt, NSW, pp 32–47

    Google Scholar 

  13. 13.

    Brijesh S, Daswani PG, Tetali P et al (2006) Studies on Pongamia pinnata (L.) Pierre leaves: understanding the mechanism(s) of action in infectious diarrhea. J Zhejiang Univ Sci B 7:665–674

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Carcache-Blanco EJ, Kang Y-H, Park EJ et al (2003) Constituents of the stem bark of Pongamia pinnata with the potential to induce quinine reductase. J Nat Prod 66:1197–1202

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology 9:553–557

    PubMed  Article  Google Scholar 

  16. 16.

    Chandrasekaran D, Kadirvel R, Viswanathan K (1989) Nutritive value of pungam (Pongamia glabra Vent) cake for sheep. Anim Feed Sci Technol 22:321–325

    Article  Google Scholar 

  17. 17.

    Chauhan D, Chauhan JS (2002) Flavonoid glycosides from Pongamia pinnata. Pharm Biol 40:171–174

    CAS  Google Scholar 

  18. 18.

    Cribb AB, Cribb JW (1981) Useful wild plants in Australia. Collins, Sydney

    Google Scholar 

  19. 19.

    Dayama OP (1985) Effect of sucrose on the growth, nodulation and nitrogen content of Pongamia pinnata. Nitrog Fix Tree Res Rep 3:9

    Google Scholar 

  20. 20.

    De BK, Bhattacharyya DK (1999) Biodiesel from minor vegetable oils like karanja oil and nahor oil. Lipid Fett 101:404–406

    Article  CAS  Google Scholar 

  21. 21.

    Elanchezhiyan M, Rajarajan S, Rajendran P et al (1993) Antiviral properties of the seed extract of an Indian medicinal plant, Pongamia pinnata Linn., against herpes simplex viruses: in-vitro studies on Vero cells. J Med Microbiol 38:262–264

    PubMed  CAS  Google Scholar 

  22. 22.

    George S, Vincent S (2005) Comparative efficacy of Annona squamosa Linn. and Pongamia glabra Vent. to Azadirachta indica A. Juss against mosquitoes. J Vector Borne Dis 42:159–163

    PubMed  Google Scholar 

  23. 23.

    Handa AK, Nandini D, Uma (2005) An alternative source of biofuel, seed germination trials of Pongamia pinnata. Int J For Usufructs Manag 6:75–80

    Google Scholar 

  24. 24.

    Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Hu J-M, Lavin M, Wojciechowski MF et al (2002) Phylogenetic analysis of nuclear ribosomal ITS/5.8S sequences in the tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya group. Syst Bot 27:722–733

    Google Scholar 

  26. 26.

    Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670

    Article  CAS  Google Scholar 

  27. 27.

    Jain KL, Dhingra HR (1991) Physical and biochemical characteristics of Parkonsonia aculeate L. and Pongamia pinnata Vent. flowers. J Apic Res 30:146–150

    CAS  Google Scholar 

  28. 28.

    Kabir KE, Islam F, Khan AR (2001) Insecticidal effect of the petroleum ether fraction obtained from the leaf extract of Pongamia glabra Vent. on the American cockroach, Periplaneta americana (L.) (Dictyoptera: Blattidae). Int Pest Control 43:152–154

    Google Scholar 

  29. 29.

    Karmee SJ, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 96:1425–1429

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Karoshi VR, Hegde GV (2002) Vegetative propagation of Pongamia pinnata (L.) Pierre: hitherto a neglected species. Indian Forester 128:348–350

    Google Scholar 

  31. 31.

    Khurma UR, Mangotra A (2004) Screening of some Leguminosae seeds for nematicidal activity. South Pac J Nat Sci 22:50–52

    Google Scholar 

  32. 32.

    Konwar BK, Banerjee GC (1987) Deoiled karanja cake (Pongamia glabra Vent.) a new feed ingredient in cattle ration. Indian Vet J 64:500–504

    Google Scholar 

  33. 33.

    Konwar BK, Banerjee GC, Mandal L (1984) Nutritive value of deoiled karanja cake (Pongamia glabra Vent.) in adult cattle. Indian J Anim Sci 54:489–490

    Google Scholar 

  34. 34.

    Konwar BK, Banerjee GC, Mandal L (1987a) Effect of feeding deoiled karanja (Pongamia glabra Vent.) cake on the quantity and quality of milk in cross-bred cows. Indian Vet J 64:62–65

    Google Scholar 

  35. 35.

    Konwar BK, Banerjee GC, Mandal L (1987b) Effect of feeding deoiled karanja (Pongamia glabra Vent.) cake on growing calves. Indian Vet J 64:399–402

    Google Scholar 

  36. 36.

    Kumar V, Chandrashekar K, Sidhu OP (2006) Efficacy of karanjin and different extracts of Pongamia pinnata against selected insect pests. J Entomol Res 30:103–108

    Google Scholar 

  37. 37.

    Lakshmi K, Rao GM, Joshi MA et al (1997) Studies on Pongamia pinnata (L.) Pierre—as an important source of forage to Apis species. J Palynol 33:137–148

    Google Scholar 

  38. 38.

    Lavin M, Eshbaugh E, Hu J-M et al (1998) Monophyletic subgroups of the tribe Millettieae (Leguminosae) as revealed by phytochrome nucleotide sequence data. Am J Bot 85:412–433

    Article  CAS  Google Scholar 

  39. 39.

    Li L, Li X, Shi C et al (2006) Pongamone A–E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry 67:1347–1352

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Mandal B, Majumdar SG, Maity CR (1985) Protease inhibitors and in vitro protein digestibility of defatted seed cakes of akashmoni and karanja. J Am Oil Chem Soc 62:1124–1126

    Article  CAS  Google Scholar 

  41. 41.

    Manonmani V, Vanagamudi K, Vinaya Rai RS (1996) Effect of seed size on seed germination and vigour in Pongamia pinnata. J Trop For Sci 9:1–5

    Google Scholar 

  42. 42.

    Misra CM, Singh SL (1989) Coppice regeneration of Cassia siamea and Pongamia pinnata. Nitrogen Fixing Tree Res Rep 7:4

    Google Scholar 

  43. 43.

    Muthu C, Ayyanar M, Raja N et al (2006) Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, India. J Ethnobiol Ethnomed 2:43–53

    PubMed  Article  Google Scholar 

  44. 44.

    Muthukumar T, Udaiyan K (2002) Growth and yield of cowpea as influenced by changes in arbuscular mycorrhizal in response to organic manuring. J Agron Crop Sci 188:123–132

    Article  Google Scholar 

  45. 45.

    Nagaraj G, Mukta N (2004) Seed composition and fatty acid profile of some tree borne oilseeds. J Oilseed Res 21:117–120

    Google Scholar 

  46. 46.

    Nagaveni HC, Vijayalakshmi (2003) Growth performance of sandal (Santalum album L.) with different host species. Sandalwood Research Newsletter Issue 18

  47. 47.

    Nair PRK (1993) An introduction to agroforestry. Kluwer Academic, Dordrecht

    Google Scholar 

  48. 48.

    Natanam R, Kadirvel R, Balagopal R (1989a) The effect of kernels of karanja (Pongamia glabra Vent) on growth and feed efficiency in broiler chicks to 4 weeks of age. Anim Feed Sci Technol 25:201–206

    Article  Google Scholar 

  49. 49.

    Natanam R, Kadirvel R, Chandrasekaran D (1989b) Chemical composition of karanja (Pongamia glabra Vent [P. pinnata]) kernel and cake as animal feed. Indian J Anim Nutr 6:270–273

    Google Scholar 

  50. 50.

    Natanam R, Kadirvel R, Ravi R (1989c) The toxic effects of karanja (Pongamia glabra Vent) oil and cake on growth and feed efficiency in broiler chicks. Anim Feed Sci Technol 27:95–100

    Article  Google Scholar 

  51. 51.

    Natanam R, Kadirvel R, Viswanathan K (1989d) The effect of karanja (Pongamia glabra Vent) cake on the performance of white leghorn pullets. Anim Feed Sci Technol 27:89–93

    Article  Google Scholar 

  52. 52.

    Palanisamy K, Ansari SA, Kumar P et al (1998) Adventitious rooting in shoot cuttings of Azadirachta indica and Pongamia pinnata. New For 16:81–88

    Google Scholar 

  53. 53.

    Patel JS, Narayana GV (1937) Chromosome numbers in some economic flowering plants. Curr Sci 5:479

    Google Scholar 

  54. 54.

    Patil SG, Hebbara M, Devarnavadagi SB (1996) Screening of multipurpose trees for saline vertisols and their bioameliorative effects. Ann Arid Zone 35:57–60

    Google Scholar 

  55. 55.

    Pavanaram SK, Ramachandra Row L (1955) New flavones from Pongamia pinnata (L.) Merr.: identification of compound D. Nature 176:1177

    Article  CAS  Google Scholar 

  56. 56.

    Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Raghavan RS, Arora CM (1958) Chromosome numbers in Indian medicinal plants II. Proc Indian Acad Sci B 47:352–358

    Google Scholar 

  58. 58.

    Raheman H, Phadatare AG (2004) Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass Bioenerg 27:393–397

    Article  CAS  Google Scholar 

  59. 59.

    Raju AJS, Rao SP (2006) Explosive pollen release and pollination as a function of nectar-feeding activity of certain bees in the biodiesel plant, Pongamia pinnata (L.) Pierre (Fabaceae). Curr Sci 90:960–967

    Google Scholar 

  60. 60.

    Ramachandra Row L (1955) New flavones from Pongamia pinnata (L.) Merr. Aust J Sci Res (A) 5:754–759

    Google Scholar 

  61. 61.

    Ramana DBV, Singh S, Solanki KR et al (2000) Nutritive evaluation of some nitrogen and non-nitrogen fixing multipurpose tree species. Anim Feed Sci Technol 88:103–111

    Article  CAS  Google Scholar 

  62. 62.

    Ravi U, Singh P, Garg AK et al (2000) Performance of lambs fed expeller pressed and solvent extracted karanj (Pongamia pinnata) oil cake. Anim Feed Sci Technol 88:121–128

    Article  Google Scholar 

  63. 63.

    Sarbhoy RK (1977) Cytogenetical studies in Pongamia pinnata (L.) Pierre. Cytologia 42:415–423

    Google Scholar 

  64. 64.

    Sekar C, Vinaya Rai RS, Ramasamy C (1996) Role of minor forest products in tribal economy of India: a case study. J Trop For Sci 8:280–288

    Google Scholar 

  65. 65.

    Shi S, Huang Y, Zeng K et al (2005) Molecular phylogenetic analysis of mangroves: independent evolutionary origins of vivipary and salt secretion. Mol Phylogenet Evol 34:159–166

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Siddiqui MH (1989) Nodulation study of a few legume tree species during seedling stage. Nitrog Fix Tree Res Rep 7:6

    Google Scholar 

  67. 67.

    Simin K, Ali Z, Khaliq-Uz-Zaman SM et al (2002) Structure and biological activity of a new rotenoid from Pongamia pinnata. Nat Prod Res 16:351–357

    CAS  Google Scholar 

  68. 68.

    Simonsen HT, Nordskjold JB, Smitt UW et al (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Singh KP, Dhakre G, Chauhan SVS (2005) Effect of mechanical and chemical treatments on seed germination in Pongamia glabra L. Seed Res 33:169–171

    Google Scholar 

  70. 70.

    Singh P, Sastry VRB, Garg AK et al (2006) Effect of long term feeding of expeller pressed and solvent extracted karanj (Pongamia pinnata) seed cake on the performance of lambs. Anim Feed Sci Technol 126:157–167

    Article  CAS  Google Scholar 

  71. 71.

    Srinivas B, Rao SR (2006) Optimization of regeneration in Pongamia pinnata (L.) Pierre—a potential biodiesel plant using Taguchi approach. Paper presented at In Vitro Biology Meeting, Minneapolis, 3–7 June 2006

  72. 72.

    Srinivasan K, Muruganandan S, Lal J et al (2001) Evaluation of anti-inflammatory activity of Pongamia pinnata leaves in rats. J Ethnopharmacol 78:151–157

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Srinivasan K, Muruganandan S, Lal J et al (2003) Antinociceptive and antipyretic activities of Pongamia pinnata leaves. Phytother Res 17:259–264

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Subbarao NS, Yadav D, Padmanabha A et al (1990) Nodule haustoria and microbial features of Cajanus and Pongamia parasitized by sandal (sandal wood). Plant Soil 128:249–256

    Article  Google Scholar 

  75. 75.

    Sujatha K, Hazra S (2007) Micropropagation of mature Pongamia pinnata Pierre. In Vitro Cell Dev Biol Plant 43:608–613

    Article  CAS  Google Scholar 

  76. 76.

    Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Thomson DF (1936) Notes on some bone and stone implements from north Queensland. J R Anthropol Soc GB Ire 66:71–74

    Google Scholar 

  78. 78.

    Tomar OS, Gupta RK (1985) Performance of some forest tree species in saline soils under shallow and saline water-table conditions. Plant Soil 87:329–335

    Article  Google Scholar 

  79. 79.

    Uddin Q, Parveen N, Khan NU et al (2003) Antifilarial potential of the fruits and leaves extracts of Pongamia pinnata on cattle filarial parasite Setaria cervi. Phytother Res 17:1104–1107

    PubMed  Article  Google Scholar 

  80. 80.

    Yadav PP, Ahmad G, Maurya R (2004) Furanoflavonoids from Pongamia pinnata fruits. Phytochemistry 65:439–443

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Yadav YS, Siddiqui AU, Parihar A (2005) Management of root-knot nematode Meloidogyne incognita infesting gram through oil cakes. J Phytological Res 18:263–264

    Google Scholar 

  82. 82.

    Yin H, Zhang S, Wu J et al (2006) Pongaflavonol: a prenylated flavonoid from Pongamia pinnata with a modified ring A. Molecules 11:786–791

    PubMed  CAS  Article  Google Scholar 

Download references


We acknowledge the support of the Australian Research Council, the Queensland State Government Smart State Initiative and The University of Queensland Strategic Fund for continuing funding of the ARC Centre of Excellence for Integrative Legume Research. Pacific Renewable Energy Pty Ltd is thanked for their partial financial support of CILR Pongamia research. We thank Anfernee Tseng (CSIRO) for running the gel of P. pinnata seed storage proteins and Dr Charles Hocart (ANU) for fatty acid analysis of seed oil.

Author information



Corresponding author

Correspondence to Peter M. Gresshoff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott, P.T., Pregelj, L., Chen, N. et al. Pongamia pinnata: An Untapped Resource for the Biofuels Industry of the Future. Bioenerg. Res. 1, 2–11 (2008).

Download citation


  • Legume
  • Biodiesel
  • Sustainability
  • Pongamia