Advertisement

Journal of Chemical Biology

, Volume 6, Issue 3, pp 121–133 | Cite as

Lack of activation of UCP1 in isolated brown adipose tissue mitochondria by glucose-O-ω-modified saturated fatty acids of various chain lengths

  • Eamon P. Breen
  • Wayne Pilgrim
  • Kieran J. Clarke
  • Cristy Yssel
  • Mark Farrell
  • Jian Zhou
  • Paul V. Murphy
  • Richard K. PorterEmail author
Original Article

Abstract

We previously demonstrated that uncoupling protein 1 activity, as measured in isolated brown adipose tissue mitochondria (and as a native protein reconstituted into liposome membranes), was not activated by the non-flippable modified saturated fatty acid, glucose-O-ω-palmitate, whereas activity was stimulated by palmitate alone (40 nM free final concentration). In this study, we investigated whether fatty acid chain length had any bearing on the ability of glucose-O-ω-fatty acids to activate uncoupling protein 1. Glucose-O-ω-saturated fatty acids of various chain lengths were synthesized and tested for their potential to activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, and the results were compared with equivalent non-modified fatty acid controls. Here we demonstrate that laurate (12C), palmitate (16C) and stearate (18C) could activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, whereas there was no activation with glucose-O-ω-laurate (12C), glucose-O-ω-palmitate (16C), glucose-O-ω-stearate (18C), glucose-O-ω-arachidate (20C) or arachidate alone. We conclude that non-flippable fatty acids cannot activate uncoupling protein 1 irrespective of chain length. Our data further undermine the cofactor activation model of uncoupling protein 1 function but are compatible with the model that uncoupling protein 1 functions by flipping long-chain fatty acid anions.

Keywords

Mitochondria UCP1 Glucose-O-ω-fatty acids BAT 

Abbreviations

BAIB

[bis(acetoxy)iodo]benzene

BAT

Brown adipose tissue

DEPT

Distortionless enhancement by polarization transfer

HMBC

Heteronuclear multiple-bond correlation

HMQC

Heteronuclear multiple-quantum correlation

TEMPO

2,2,6,6-Tetramethylpiperidinyloxyl

THF

Tetrahydrofuran

UCP

Uncoupling protein

Notes

Acknowledgments

The research in this manuscript was funded by a Science Foundation Ireland Principal Investigator grant to RKP and a Trinity Studentship award to KJC. RKP is a member of the MITOFOOD COST action (FA0602). Higher Education Authority Programme for Research Cycle 3 for funding to PVM.

Supplementary material

12154_2013_93_MOESM1_ESM.docx (6.8 mb)
ESM 1 (DOCX 6941 kb)

References

  1. 1.
    Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64(1):1–64Google Scholar
  2. 2.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359CrossRefGoogle Scholar
  3. 3.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517CrossRefGoogle Scholar
  4. 4.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508CrossRefGoogle Scholar
  5. 5.
    Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58(7):1526–1531CrossRefGoogle Scholar
  6. 6.
    Carroll AM, Haines LR, Pearson TW, Fallon P, Walsh C, Brennan CM, Breen EP, Porter RK (2005) Detection of a functioning UCP 1 in thymus. J Biol Chem 280(16):15534–15543CrossRefGoogle Scholar
  7. 7.
    Adams AE, Hanrahan O, Nolan DN, Voorheis HP, Fallon P, Porter RK (2007) Images of mitochondrial UCP 1 in mouse thymocytes using confocal microscopy. Biochim Biophys Acta 1777(2):115–117Google Scholar
  8. 8.
    Adams AE, Carroll AM, Fallon PG, Porter RK (2008) Mitochondrial uncoupling protein 1 expression in thymocytes. Biochim Biophys Acta 1777(7–8):772–776Google Scholar
  9. 9.
    Adams AE, Kelly OM, Porter RK (2010) Absence of mitochondrial uncoupling protein 1 affects apoptosis in thymocytes, thymocyte/T-cell profile and peripheral T-cell number. Biochim Biophys Acta 1797(6–7):807–816Google Scholar
  10. 10.
    Skulachev VP (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294(3):158–162CrossRefGoogle Scholar
  11. 11.
    Garlid KD, Jabůrek M, Ježek P, Vařecha M (2000) How do uncoupling proteins uncouple? Biochim Biophys Acta 1459(2–3):383–389Google Scholar
  12. 12.
    Garlid KD, Jabůrek M, Ježek P (2001) Mechanism of uncoupling protein action. Biochem Soc Trans 29(6):803–806CrossRefGoogle Scholar
  13. 13.
    Garlid KD, Orosz DE, Modrianský M, Vassanelli S, Ježek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271(5):2615–2620CrossRefGoogle Scholar
  14. 14.
    Jabůrek M, Vařecha M, Gimeno RE, Demski M, Ježek P, Zhang M, Burn P, Tartaglia LA, Garlid KD (1999) Transport function and regulation of uncoupling proteins 2 and 3. J Biol Chem 274(3):26003–26007CrossRefGoogle Scholar
  15. 15.
    Ježek P (1999) Fatty acid interaction with mitochondrial uncoupling proteins. J Bioenerg Biomembr 31(5):457–466CrossRefGoogle Scholar
  16. 16.
    Breen EP, Gouin SG, Murphy AF, Haines LR, Jackson AM, Pearson TW, Murphy PV, Porter RK (2006) On the mechanism of mitochondrial uncoupling protein 1 function. J Biol Chem 281(4):2114–2119CrossRefGoogle Scholar
  17. 17.
    Klingenberg M, Echtay KS, Bienengraeber M, Winkler E, Huang SG (1999) Structure–function relationship in UCP1. Int J Obes Relat Metab Disord Suppl 6:S24–S29CrossRefGoogle Scholar
  18. 18.
    Klingenberg M, Huang SG (1999) Structure and function of uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415(2):271–296CrossRefGoogle Scholar
  19. 19.
    Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31(5):399–406CrossRefGoogle Scholar
  20. 20.
    Gouin SG, Pilgrim W, Porter RK, Murphy PV (2005) Synthesis of a glycolipid for studying mechanisms of mitochondrial uncoupling proteins. Carbohydr Res 340(8):1547–1552CrossRefGoogle Scholar
  21. 21.
    Mbadugha BNA, Menger FM (2003) Sugar/steroid/sugar conjugates: sensitivity of lipid binding to sugar structure. Org Lett 5(22):4041–4044CrossRefGoogle Scholar
  22. 22.
    Qiu X, Ong S, Bernal C, Rhee D, Pidgeon C (1994) A general synthetic route for preparing ether phospholipids suitable for immobilization: a phosphotriester approach. J Org Chem 59(3):537–543CrossRefGoogle Scholar
  23. 23.
    Lei H, Atkinson J (2000) Synthesis of phytyl- and chroman-derivatized photoaffinity labels based on alpha-tocopherol. J Org Chem 65(8):2560–2567CrossRefGoogle Scholar
  24. 24.
    Mühlhausen U, Schirrmacher R, Piel M, Lecher B, Briegert M, Piee-Staffa A, Kaina B, Rösch F (2006) Synthesis of 131I-labeled glucose-conjugated inhibitors of O6-methylguanine-DNA methyltransferase (MGMT) and comparison with nonconjugated inhibitors as potential tools for in vivo MGMT imaging. J Med Chem 49(21):263–272CrossRefGoogle Scholar
  25. 25.
    Lermer L, Neeland EG, Ounsworth JP, Sims RJ, Tischler SA, Weiler L (1992) The synthesis of beta-keto lactones via cyclization of beta-keto ester dianions or the cyclization of meldrum acid derivatives. Can J Chem 70(5):1427–1445CrossRefGoogle Scholar
  26. 26.
    Chappell JB, Hansford RG (1972) In: Birnie GD (ed) Subcellular components: preparation and Fractionation. Butterworths, London, pp. 77–91Google Scholar
  27. 27.
    Markwell MA, Haas SM (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210CrossRefGoogle Scholar
  28. 28.
    González-Barroso MM, Fleury C, Bouillaud F, Nicholls DG, Rial E (1998) The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter. J Biol Chem 273(25):15528–15532CrossRefGoogle Scholar
  29. 29.
    Reynafarje B, Costa LE, Lehninger AL (1985) O2 solubility in aqueous media determined by a kinetic method. Anal Biochem 145(2):406–418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eamon P. Breen
    • 1
  • Wayne Pilgrim
    • 2
  • Kieran J. Clarke
    • 1
  • Cristy Yssel
    • 1
  • Mark Farrell
    • 2
  • Jian Zhou
    • 2
  • Paul V. Murphy
    • 2
  • Richard K. Porter
    • 1
    Email author
  1. 1.School of Biochemistry and Immunology, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  2. 2.School of ChemistryNational University of Ireland GalwayGalwayIreland

Personalised recommendations