In situ synthesis of fluorescent membrane lipids (ceramides) using click chemistry


Ceramide analogues containing azide groups either in the polar head or in the hydrocarbon chains are non-fluorescent. When incorporated into phospholipid bilayers, they can react in situ with a non-fluorescent 1,8-naphthalimide using click chemistry giving rise to fluorescent ceramide derivatives emitting at ≈440 nm. When incorporated into giant unilamellar vesicles, two-photon excitation at 760 nm allows visualization of the ceramide-containing bilayers. This kind of method may be of general applicability in the study of model and cell membranes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4





Nuclear magnetic resonance


High-resolution mass spectrometry


Egg phosphatidylcholine


  1. 1.

    Loura LM, Ramalho JP (2011) Recent developments in molecular dynamics simulations of fluorescent membrane probes. Molecules 16(7):5437–5452

    Article  CAS  Google Scholar 

  2. 2.

    Maier O, Oberle V, Hoekstra D (2002) Fluorescent lipid probes: some properties and applications (a review). Chem Phys Lipids 116(1–2):3–18

    Article  CAS  Google Scholar 

  3. 3.

    Lim RK, Lin Q (2010) Bioorthogonal chemistry: recent progress and future directions. Chem Commun (Camb) 46(10):1589–1600

    Article  CAS  Google Scholar 

  4. 4.

    Baskin JM, Bertozzi CR (2007) Bioorthogonal click chemistry: covalent labeling in living systems. QSAR Comb Sci 26:1211–1219

    Article  CAS  Google Scholar 

  5. 5.

    Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48(38):6974–6998

    Article  CAS  Google Scholar 

  6. 6.

    Qi J, Han MS, Chang YC, Tung CH (2011) Developing visible fluorogenic ‘click-on’ dyes for cellular imaging. Bioconjug Chem 22(9):1758–1762

    CAS  Google Scholar 

  7. 7.

    Qi J, Tung CH (2011) Development of benzothiazole ‘click-on’ fluorogenic dyes. Bioorg Med Chem Lett 21(1):320–323

    Article  CAS  Google Scholar 

  8. 8.

    Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137

    Article  CAS  Google Scholar 

  9. 9.

    Lutz JF (2007) 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed Engl 46(7):1018–1025

    Article  CAS  Google Scholar 

  10. 10.

    Wu P, Fokin VV (2007) Catalytic azide–alkyne cycloadditions: reactivity and applications. Aldrichimica Acta 40(1):7–17

    CAS  Google Scholar 

  11. 11.

    Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong CH (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci U S A 103(33):12371–12376

    Article  CAS  Google Scholar 

  12. 12.

    Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem 48(8):1498–1500

    Article  CAS  Google Scholar 

  13. 13.

    Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184(3):285–300

    Article  CAS  Google Scholar 

  14. 14.

    Zeidan YH, Hannun YA (2010) The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 10(5):454–466

    Article  CAS  Google Scholar 

  15. 15.

    Sot J, Ibarguren M, Busto JV, Montes LR, Goni FM, Alonso A (2008) Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett 582(21–22):3230–3236

    Article  CAS  Google Scholar 

  16. 16.

    Goni FM, Alonso A (2009) Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 1788(1):169–177

    Article  CAS  Google Scholar 

  17. 17.

    Carrer DC, Schreier S, Patrito M, Maggio B (2006) Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobility: DMPC and asymmetric ceramide mixtures. Biophys J 90(7):2394–2403

    Article  CAS  Google Scholar 

  18. 18.

    Loura LM, de Almeida RF, Silva LC, Prieto M (2009) FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta 1788(1):209–224

    Article  CAS  Google Scholar 

  19. 19.

    Budin I, Devaraj NK (2012) Membrane assembly driven by a biomimetic coupling reaction. J Am Chem Soc 134(2):751–753

    Article  CAS  Google Scholar 

  20. 20.

    Bedia C, Casas J, Garcia V, Levade T, Fabrias G (2007) Synthesis of a novel ceramide analogue and its use in a high-throughput fluorogenic assay for ceramidases. Chembiochem 8(6):642–648

    Article  CAS  Google Scholar 

  21. 21.

    Montes LR, Alonso A, Goni FM, Bagatolli LA (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93(10):3548–3554

    Article  CAS  Google Scholar 

  22. 22.

    Montes LR, Ahyayauch H, Ibarguren M, Sot J, Alonso A, Bagatolli LA, Goni FM (2010) Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions. Methods Mol Biol 606:105–114

    Article  CAS  Google Scholar 

  23. 23.

    Sot J, Bagatolli LA, Goni FM, Alonso A (2006) Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90(3):903–914

    Article  CAS  Google Scholar 

  24. 24.

    de Almeida RF, Loura LM, Prieto M (2009) Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 157(2):61–77

    Article  Google Scholar 

  25. 25.

    Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23(14):7659–7665

    Article  CAS  Google Scholar 

  26. 26.

    Ira ZS, Ramirez DM, Vanderlip S, Ogilvie W, Jakubek ZJ, Johnston LJ (2009) Enzymatic generation of ceramide induces membrane restructuring: correlated AFM and fluorescence imaging of supported bilayers. J Struct Biol 168(1):78–89

    Article  CAS  Google Scholar 

  27. 27.

    Megha, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279(11):9997–10004

  28. 28.

    Busto JV, Sot J, Requejo-Isidro J, Goni FM, Alonso A (2010) Cholesterol displaces palmitoylceramide from its tight packing with palmitoylsphingomyelin in the absence of a liquid-disordered phase. Biophys J 99(4):1119–1128

    Article  CAS  Google Scholar 

  29. 29.

    Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531(1):47–53

    Article  CAS  Google Scholar 

Download references


This work was supported in part by Spanish Ministerio de Ciencia e Innovación grants BFU2011-28566 (AA), SAF 2011-22444 (JLA/AD) and BFU 2007-62062 (FMG), and by Generalitat de Catalunya grant SGR 2009-1072 (JLA/AD). LRM is grateful to Consejo Superior de Investigaciones Científicas for a JAEdoc fellowship and MG for a JAEpredoc fellowship.

Author information



Corresponding author

Correspondence to L.-Ruth Montes.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 367 kb)


(PDF 369 kb)


(PDF 504 kb)


(PDF 430 kb)


(PDF 407 kb)


(PDF 428 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garrido, M., Abad, J.L., Alonso, A. et al. In situ synthesis of fluorescent membrane lipids (ceramides) using click chemistry. J Chem Biol 5, 119–123 (2012).

Download citation


  • Ceramide
  • GUV
  • Fluorescence
  • Click chemistry