Advertisement

Journal of Chemical Biology

, Volume 1, Issue 1–4, pp 49–62 | Cite as

Insights into the PI3-K-PKB-mTOR signalling pathway from small molecules

  • Richard M. GunnEmail author
  • Helen C. Hailes
Review

Abstract

This review describes the progress that has been made in understanding the PI3-K-PKB-mTOR signalling pathway by using small molecules as pharmacological probes. It briefly covers the structural characteristics, regulation of and downstream effects of several key regulators of PI3-K-PKB-mTOR signalling, then highlights the use of small molecules (by structural type) to selectively modulate specific components of the pathway.

Keywords

Small molecules Pharmacological probes Cell signalling PI3-K PKB mTOR Rapamycin Wortmannin 

Notes

Acknowledgements

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding (RMG).

References

  1. 1.
    Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature 441:424–430CrossRefGoogle Scholar
  2. 2.
    Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619CrossRefGoogle Scholar
  3. 3.
    Anderson KE, Jackson SP (2003) Class I phosphoinositide 3-kinases. Int J Biochem Cell Biol 35:1028–1033CrossRefGoogle Scholar
  4. 4.
    Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L (2005) p84, a new Gβγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr Biol 15:566–570CrossRefGoogle Scholar
  5. 5.
    Voigt P, Dorner MB, Schaefer M (2005) Characterisation of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase γ that is highly expressed in heart and interacts with PDE3B. J Biol Chem 281:9977–9986CrossRefGoogle Scholar
  6. 6.
    Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role of G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287:1049–1053CrossRefGoogle Scholar
  7. 7.
    Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signaling—which way to target? Trends Pharmacol Sci 24:366–376CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532CrossRefGoogle Scholar
  9. 9.
    Stephens L, Cooke FT, Walters R, Jackson T, Volinia S, Gout I, Waterfield MD, Hawkins PT (1994) Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Curr Biol 4:203–214CrossRefGoogle Scholar
  10. 10.
    Sasaoka T, Wada T, Fukui K, Murakami S, Ishihara H, Suzuki R, Tobe K, Kadowaki T, Kobayashi M (2004) SH-2-containing inositol phosphatase 2 predominantly regulates Akt2, and not Akt 1, phosphorylation at the plasma membrane in response to insulin in 3T3-L1 adipocytes. J Biol Chem 279:14835–14843CrossRefGoogle Scholar
  11. 11.
    Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A (2005) PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 280:22523–22529CrossRefGoogle Scholar
  12. 12.
    Parker PJ, Parkinson SJ (2001) AGC protein kinase phosphorylation and protein kinase C. Biochem Soc Trans 29:860–863CrossRefGoogle Scholar
  13. 13.
    McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, Armit LJ, Arthur JS, Alessi DR (2004) The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 23:2071–2082CrossRefGoogle Scholar
  14. 14.
    Scheid MP, Woodgett JR (2003) Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 546:108–112CrossRefGoogle Scholar
  15. 15.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307:1098–1101CrossRefGoogle Scholar
  16. 16.
    Brognard J, Sierecki E, Gao T, Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25:917–931CrossRefGoogle Scholar
  17. 17.
    Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24CrossRefGoogle Scholar
  18. 18.
    Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTOR components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCa but not S6K1. Dev Cell 11:859–871CrossRefGoogle Scholar
  19. 19.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168CrossRefGoogle Scholar
  20. 20.
    Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor FKBP38. Science 318:977–980CrossRefGoogle Scholar
  21. 21.
    Vander Haar E, Lee S, Bandhakavi S, Griffin TJ, Kim D-H (2007) Insulin signaling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol 9:316–323CrossRefGoogle Scholar
  22. 22.
    Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22CrossRefGoogle Scholar
  23. 23.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274CrossRefGoogle Scholar
  24. 24.
    Knight ZA, Shokat KM (2007) Chemical genetics: where genetics and pharmacology meet. Cell 128:425–430CrossRefGoogle Scholar
  25. 25.
    Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30:194–204CrossRefGoogle Scholar
  26. 26.
    Dummler B, Hemmings BA (2007) Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans 35:231–235CrossRefGoogle Scholar
  27. 27.
    Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphophate in neutrophil responses. Biochem J 296:297–301Google Scholar
  28. 28.
    Liu Y, Shreder KR, Gai W, Corral S, Ferris DK, Rosenblum JS (2005) Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potentially inhibits mammalian polo-like kinase. Chem Biol 12:99–107CrossRefGoogle Scholar
  29. 29.
    Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JSC, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315CrossRefGoogle Scholar
  30. 30.
    Zhu T, Gu J, Yu K, Lucas J, Cai P, Tsao R, Gong Y, Li F, Chaudhary I, Desai P, Ruppen M, Fawzi M, Gibbons J, Ayral-Kaloustian S, Skotnicki J, Mansour T, Zask A (2006) Pegylated wortmannin and 17-hydroxywortmannin conjugates as phosphoinositide 3-kinase inhibitors active in human tumor xenograft models. J Med Chem 49:1373–1378CrossRefGoogle Scholar
  31. 31.
    Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, Halter RJ, Wipf P, Abraham R, Kirkpatrick L, Powis G (2004) Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 3:763–772Google Scholar
  32. 32.
    Giner JL, Kehbein KA, Cook JA, Smith MC, Vlahos CJ, Badwey JA (2006) Synthesis of fluorescent derivatives of wortmannin and demethoxyviridin as probes for phosphatidylinositol 3-kinase. Bioorg Med Chem Lett 16:2518–2521CrossRefGoogle Scholar
  33. 33.
    Yuan H, Luo J, Field S, Weissleder R, Cantley L, Josephson L (2005) Synthesis and activity of C11-modified wortmannin probes for PI3 kinase. Bioconjugate Chem 16:669–675CrossRefGoogle Scholar
  34. 34.
    Hartford CM, Ratain MJ (2007) Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 82:381–388CrossRefGoogle Scholar
  35. 35.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758CrossRefGoogle Scholar
  36. 36.
    Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91:12574–12578CrossRefGoogle Scholar
  37. 37.
    Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependant fashion and is homologous to yeast TORs. Cell 78:35–43CrossRefGoogle Scholar
  38. 38.
    Akcakanat A, Singh G, Hung MC, Meric-Bernstam F (2007) Rapamycin regulates the phosphorylation of rictor. Biochem Biophys Res Commun 362:330–333CrossRefGoogle Scholar
  39. 39.
    Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248Google Scholar
  40. 40.
    Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919CrossRefGoogle Scholar
  41. 41.
    Gharbi S, Zvelebil M, Shuttleworth S, Hancox T, Saghir N, Timms J, Waterfield M (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 404:15–21CrossRefGoogle Scholar
  42. 42.
    Knight ZA, Chiang GG, Alaimo PJ, Kenski DM, Ho CB, Coan K, Abraham RT, Shokat KM (2004) Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg Med Chem 12:4749–4759CrossRefGoogle Scholar
  43. 43.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B (2006) A pharmacological map of the PI3-K family defines a role for p110a in insulin signaling. Cell 125:733–747CrossRefGoogle Scholar
  44. 44.
    Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJH, Withers DJ, Vanhaesebroeck B (2006) Critical role for the p110a phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370CrossRefGoogle Scholar
  45. 45.
    Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y, Sturgeon SA, Prabaharan H, Thompson PE, Smith GD, Shepherd PR, Daniele N, Kulkarni S, Abbott B, Saylik D, Jones C, Lu L, Giuliano S, Hughan SC, Angus JA, Robertson AD, Salem HH (2005) PI 3-kinase p110b: a new target for antithrombotic therapy. Nat Med 11:507–514CrossRefGoogle Scholar
  46. 46.
    Chaussade C, Rewcastle GW, Kendall JD, Denny WA, Cho K, Gronning LM, Chong ML, Anagnostou SH, Jackson SP, Daniele N, Sheperd PR (2007) Evidence for functional redundancy of class 1A PI3K isoforms in insulin signalling. Biochem J 404:449–458CrossRefGoogle Scholar
  47. 47.
    Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D, Shokat KM, Weiss WA (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficiency in glioma. Cancer Cell 9:341–349CrossRefGoogle Scholar
  48. 48.
    Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S, Henley A, Di-Stefano F, Ahmad Z, Guillard S, Bjerke LM, Kelland L, Valenti M, Patterson L, Gowan S, de Haven Brandon A, Hayakawa M, Kaizawa H, Koizumi T, Ohishi T, Patel S, Saghir N, Parker P, Waterfield M, Workman P (2007) Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67:5840–5850CrossRefGoogle Scholar
  49. 49.
    Yaguchi S, Kukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T (2006) Antitumour activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Nat Cancer Inst 98:545–556CrossRefGoogle Scholar
  50. 50.
    Yang J, Shamji A, Matchacheep S, Schreiber SL (2007) Identification of a small-molecule inhibitor of class 1a PI3Ks with cell-based screening. Chem Biol 14:371–377CrossRefGoogle Scholar
  51. 51.
    Sadhu S, Masinovsky B, Dick K, Sowell CG, Staunton DE (2003) Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol 170:2647–2654Google Scholar
  52. 52.
    Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B (2006) Key role of the p110δ isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacological interferencewith p110δ function in B cells. Blood 107:642–650CrossRefGoogle Scholar
  53. 53.
    Ji H, Rintelen F, Waltzinger C, Bertschy Meier D, Bilancio A, Pearce W, Hirsch E, Wymann MP, Ruckle T, Camps M, Vanhaesebroeck B, Okkenhaug K, Rommel C (2007) Inactivation of PI3Kγ and PI3Kδ distorts T-cell development and causes multiple organ inflammation. Blood 110:2940–2947CrossRefGoogle Scholar
  54. 54.
    Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Francon B, Martin T, Gretener D, Perrin D, Leroy D, Vitte PA, Hirsch E, Wymann MP, Cirillo R, Schwarz MK, Rommel C (2005) Blockade of PI3Kg suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11:936–943Google Scholar
  55. 55.
    Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJ, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297:1031–1034Google Scholar
  56. 56.
    Pomel V, Klicic J, Covini D, Church DD, Shaw JP, Roulin K, Burgat-Charvillon F, Valognes D, Camps M, Chabert C, Gillieron C, Francon B, Perrin D, Leroy D, Gretener D, Nichols A, Vitte PA, Carboni S, Rommel C, Schwarz MK, Ruckle T (2006) Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase γ. J Med Chem 49:3857–3871CrossRefGoogle Scholar
  57. 57.
    Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408CrossRefGoogle Scholar
  58. 58.
    Defeo-Jones D, Barnett SF, Fu S, Hancock PJ, Haskell KM, Leander KR, McAvoy E, Robinson RG, Duggan ME, Lindsley CW, Zhao Z, Huber HE, Jones RE (2005) Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 4:271–279Google Scholar
  59. 59.
    Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, Los M (2008) Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J Cell Sci 121:979–988CrossRefGoogle Scholar
  60. 60.
    Wu Z, Hartnett JC, Neilson LA, Robinson RG, Fu S, Barnett SF, Defeo-Jones D, Jones RE, Kral AM, Huber HE, Hartman GD, Bilodeau MT (2008) Development of pyridopyrimidines as potent Akt1/2 inhibitors. Bioorg Med Chem Lett 18:1274–1279CrossRefGoogle Scholar
  61. 61.
    Hartnett JC, Barnett SF, Bilodeau MT, Defeo-Jones D, Hartman GD, Huber HE, Jones RE, Kral AM, Robinson RG, Wu Z (2008) Optimization of 2,3,5-trisubstitued pyridine derivatives as potent allosteric Akt1 and Akt2 inhibitors. Bioorg Med Chem Lett 18:2194–2197CrossRefGoogle Scholar
  62. 62.
    Wu Z, Robinson RG, Fu S, Barnett SF, Defeo-Jones D, Jones RE, Kral AM, Huber HE, Kohl NE, Hartman GD, Bilodeau MT (2008) Rapid assembly of diverse and potent allosteric Akt inhibitors. Bioorg Med Chem Lett 18:2211–2214CrossRefGoogle Scholar
  63. 63.
    Weiss WA, Taylor SS, Shokat KM (2007) Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat Chem Biol 3:739–744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity College LondonLondonUK
  2. 2.Chemical Biology CentreImperial College LondonLondonUK

Personalised recommendations