, Volume 11, Issue 1, pp 83–95 | Cite as

The Role of Neuroscience in the Evaluation of Mental Insanity: on the Controversies in Italy

Comment on “on the Stand. Another Episode of Neuroscience and Law Discussion from Italy”
  • Cristina Scarpazza
  • Silvia Pellegrini
  • Pietro Pietrini
  • Giuseppe Sartori
Original Paper


In the present manuscript, we comment upon a paper that strongly criticized an expert report written by the consultants of the defense (two of the authors of the present paper, PP and GS) in a case of pedophilia, in which clinical and neuro-scientific data were used to establish the causal link between brain alterations and onset of criminal behavior. These critiques appear to be based mainly on wrong pieces of information and on a misinterpretation of the logical reasoning adopted by defense consultants. Here we provide a point-by-point reply to the issues raised in the above paper and also discuss the potential role that neuroscience may contribute in the forensic context. Did the forensic neuroscience defense consultants claim the existence of a deterministic relationship between brain structure or function and behavior? How did the neuroscientific logic work in this specific case? How may the classic psychiatric/neurologic examination and neuroscientific evidence work side by side? Does the rarity of a disease impact on the causal relationship between the disease and the crime? Do neuroscientific data need to be interpreted? We address the above questions and conclude that neuroscience may strengthen the results of psychiatric evaluations, thus reducing uncertainty in the forensic settings.


Acquired pedophilia Neuroscience Law Psychiatry Criminal liability Expert witness 


  1. 1.
    Rigoni, D., S. Pellegrini, V. Mariotti, A. Cozza, A. Mechelli, S.D. Ferrara, P. Pietrini, and G. Sartori. 2010. How neuroscience and behavioral genetics improve psychiatric assessment: Report on a violent murder case. Frontiers in Behavioral Neuroscience 4: 160–169.CrossRefGoogle Scholar
  2. 2.
    Blair, R.J., and T.M. Lee. 2013. The social cognitive neuroscience of aggression, violence, and psychopathy. Social Neuroscience 8 (2): 108–111.CrossRefGoogle Scholar
  3. 3.
    Pietrini, P., M. Guazzelli, G. Basso, K. Jaffe, and J. Grafman. 2000. The neurometabolic bases of aggressive behavior assessed by positron emission tomography in humans. The American Journal of Psychiatry 157: 1772–1781.CrossRefGoogle Scholar
  4. 4.
    Iofrida, C., S. Palumbo, and S. Pellegrini. 2014. Molecular genetics and antisocial behavior: Where do we stand? Experimental Biology and Medicine (Maywood, N.J.) 239: 1514–1523.CrossRefGoogle Scholar
  5. 5.
    Mendez, M.F., A.K. Chen, J.F. Shapira, and B.L. Miller. 2005. Acquired sociopathy and frontotemporal dementia. Dementia and Geriatric Cognitive Disorders 20 (2–3): 99–104.CrossRefGoogle Scholar
  6. 6.
    Gong, Q., P. Dazzan, C. Scarpazza, K. Kasai, X. Hu, T.R. Marquez, N. Iwashiro, X. Huang, R.M. Murray, S. Koike, A.S. David, H. Yamasue, S. Lui, and A. Mechelli. 2015. A neuroanatomical signature for schizophrenia across different ethnic groups. Schizophrenia Bulletin 41 (6): 1266–1275.CrossRefGoogle Scholar
  7. 7.
    Pellegrini, S., S. Palumbo, C. Iofrida, E. Melissari, G. Rota, V. Mariotti, T. Anastasio, A. Manfrinati, R. Rumiati, L. Lotto, M. Sarlo, and P. Pietrini. 2017. Genetically-driven enhancement of dopaminergic transmission affects moral acceptability in females but not in males: A pilot study. Frontiers in Behavioral Neuroscience 11: 156.CrossRefGoogle Scholar
  8. 8.
    Sartori, G., S. Pellegrini, and A. Mechelli. 2011. Forensic neuroscience: From basic research to applications and pitfalls. Current Opinion in Neurology 24: 371–377.CrossRefGoogle Scholar
  9. 9.
    Jones, O.D., A.D. Wagner, D.L. Faigman, and M.E. Raichle. 2013. Neuroscientists in court. Nature Reviews. Neuroscience 14 (10): 730–736.CrossRefGoogle Scholar
  10. 10.
    Wardlaw, J.M., G. O’Connell, K. Shuler, J. DeWilde, J. Haley, O. Ecobar, S. Murray, R. Rae, D. Jarvie, P. Sandercock, and B. Schafer. 2011. “Can it read my mind?”- what do the public and experts think of the current (mis)uses of neuroimaging? PlosOne 6 (10): e25829.CrossRefGoogle Scholar
  11. 11.
    Reeves, D., M.J. Mills, S.B. Billick, and J.D. Brodie. 2003. Limitations of brain imaging in forensic psychiatry. The Journal of the American Academy of Psychiatry and the Law 31 (1): 89–96.Google Scholar
  12. 12.
    Fuss, J. 2016. Legal responses to neuroscience. Journal of Psychiatry & Neuroscience 41 (6): 363–365.CrossRefGoogle Scholar
  13. 13.
    Hauser, L.L. 2016. Forensic implications of neuroscientific advancements. The Journal of the American Academy of Psychiatry and the Law 44 (2): 193–197.Google Scholar
  14. 14.
    Fodzar, M.A. 2016. The relevance of modern neuroscience to forensic psychiatry practice. The Journal of the American Academy of Psychiatry and the Law 44 (2): 145–150.Google Scholar
  15. 15.
    Dror, I.E. 2015. Cognitive neuroscience in forensic science: Understanding and utilizing the human element. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370 (1674).Google Scholar
  16. 16.
    Mameli, F., C. Scarpazza, E. Tomasini, R. Ferrucci, F. Ruggiero, G. Sartori, and A. Priori. 2017. The guilty brain: The utility of neuroimaging and neurostimulation studies in forensic field. Reviews in the Neurosciences 28 (2): 161–172.CrossRefGoogle Scholar
  17. 17.
    Pietrini, P., and V. Bambini. 2009. Homo Ferox: The contribution of functional brain studies to understand the neural basis of aggressive and criminal behavior. International Journal of Law and Psychiatry 32 (4): 259–265.CrossRefGoogle Scholar
  18. 18.
    Farisco, M., and C. Petrini. 2014. On the stand. Another episode of neuroscience and law discussion from Italy. Neuroethics 7: 243–245.CrossRefGoogle Scholar
  19. 19.
    Sartori, G., C. Scarpazza, S. Codognotto, and P. Pietrini. 2016. An unusual case of acquired pedophilic behavior following compression of orbitofrontal cortex and hypothalamus by a Clivus Chordoma. Journal of Neurology 263 (7): 1454–1455.CrossRefGoogle Scholar
  20. 20.
    Szmukler, G., and D.B. Kelly. 2016. We should replace conventional mental health law with capacity-based law. The British Journal of Psychiatry 209 (6): 449–453.CrossRefGoogle Scholar
  21. 21.
    Cuthbert, B.N. 2015. Research domain criteria: Toward future psychiatric nosologies. Dialogues in Clinical Neuroscience 17 (1): 89–97.Google Scholar
  22. 22.
    Bottalico, B., and T. Bruni. 2012. Post traumatic stress disorder, neuroscience and the law. International Journal of Law and Psychiatry 35 (2): 112–120.CrossRefGoogle Scholar
  23. 23.
    Casartelli, L., and C. Chiamulera. 2013. Opportunities, threats and limitations of neuroscience data in forensic psychiatric evaluation. Current Opinion in Psychiatry 26 (5): 468–473.CrossRefGoogle Scholar
  24. 24.
    Rappeport, J.R. 1982. Differences between forensic and general psychiatry. The American Journal of Psychiatry 139 (3): 331–334.CrossRefGoogle Scholar
  25. 25.
    Rosenhan, D. 1973. On being sane in insane places. Science 179 (4070): 250–258.CrossRefGoogle Scholar
  26. 26.
    Miller, P.R., R. Dasher, R. Collins, P. Griffiths, and F. Brown. 2001. Inpatient diagnostic assessment: 1. Accuracy of structured vs unstructured interviews. Psychiatry Research 105 (3): 255–264.CrossRefGoogle Scholar
  27. 27.
    Miller, P.R. 2001. Inpatient diagnosis assessments: 2. Interrater reliability and outcomes of structured vs. unstructured interviews. Psychiatry Research 105 (3): 265–271.CrossRefGoogle Scholar
  28. 28.
    Rogers, R., 2008. Clinical assessment of malingering and deception, third edition. New York: Guilford Press.Google Scholar
  29. 29.
    Dubois, B., H.H. Feldman, C. Jacova, S.T. Dekosky, P. Barberger-Gateau, J. Cummings, A. Delacourte, et al. 2007. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology 6 (8): 734–746.CrossRefGoogle Scholar
  30. 30.
    Pietrini, P. 2003. Toward a biochemistry of mind? (editorial). The American Journal of Psychiatry 160: 1907–1908.CrossRefGoogle Scholar
  31. 31.
    Poldrack, R. 2006. Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences 10: 59–63.CrossRefGoogle Scholar
  32. 32.
    Aguirre, G.K. 2003. Functional imaging in behavioral neurology and cognitive neuropsychology. In Behavioral neurology and cognitive neuropsychology, ed. T.E. Feinberg and M.J. Farah, 35–46. New York: McGraw-Hill.Google Scholar
  33. 33.
    D’Esposito, M., D. Ballard, G.K. Aguirre, and E. Zarahn. 1998. Human prefrontal cortex is not specific for working memory: A functional MRI study. NeuroImage 8 (3): 274–282.CrossRefGoogle Scholar
  34. 34.
    Scarpazza, C., and M.S. De Simone. 2016. Voxel based morphometry: Current perspectives. Neuroscience and Neuroeconomics 5: 19–35.CrossRefGoogle Scholar
  35. 35.
    Rascovsky, K., J.R. Hodges, D. Knopman, M.F. Mendez, J.H. Kramer, J. Neuhaus, J.C. van Swieten, et al. 2011. Sensitivity of revised diagnostic criteria for the behavioral variant of frontotemporal dementia. Brain 134 (pt 9): 2456–2477.CrossRefGoogle Scholar
  36. 36.
    Swaab, D.F. 2008. Sexual orientation and its basis in brain structure and function. Proceedings of the National Academy of Sciences of the United States of America 105 (30): 10273–10274.CrossRefGoogle Scholar
  37. 37.
    Damery, S., R. Ryan, S. Wilson, T. Ismail, R. Hobbs, and Improving Colorectal Outcomes Group. 2011. Iron deficiency anaemia and delayed diagnosis of colorectal cancer: A retrospective cohort study. Colorectal Disease 13 (4): e53–e60.CrossRefGoogle Scholar
  38. 38.
    Stoleru, S., V. Fonteille, C. Cornelis, C. Joyal, and V. Moulier. 2012. Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A recent review and meta-analysis. Neuroscience and Biobehavioral Reviews 36: 1481–1509.CrossRefGoogle Scholar
  39. 39.
    Anckarsater, H., S. Radovic, C. Svennerlind, et al. 2009. Mental disorder is a cause of crime: The cornerstone of forensic psychiatry. International Journal of Law and Psychiatry 32 (6): 342–347.CrossRefGoogle Scholar
  40. 40.
    Monhke, S., S. Muller, T. Amelung, T.H.C. Kruger, J. Ponseti, B. Schiffer, M. Walter, K.M. Beier, and H. Walter. 2014. Brain alteration in paedophilia: A critical review. Progress in Neurobiology 122: 1–23.CrossRefGoogle Scholar
  41. 41.
    Mendez, M., and J.S. Shapira. 2011. Pedophilic behavior from brain disease. The Journal of Sexual Medicine 8 (4): 1092–1100.CrossRefGoogle Scholar
  42. 42.
    Miller, B.L., J.L. Cummings, H. McIntyre, G. Ebers, and M. Grode. 1986. Hypersexuality or altered sexual preference following brain injury. Journal of Neurology, Neurosurgery, and Psychiatry 49: 867–873.CrossRefGoogle Scholar
  43. 43.
    Jaward, S., C. Sidebothams, R. Sequira, and N. Jamil. 2009. Altered sexual orientation following dominant hemisphere infarct. The Journal of Neuropsychiatry and Clinical Neurosciences 21 (3): 353–354.CrossRefGoogle Scholar
  44. 44.
    Meynen, G. 2016. Neurolaw: Recognizing opportunities and challenges for psychiatry. Journal of Psychiatry & Neuroscience 41 (1): 3–5.CrossRefGoogle Scholar
  45. 45.
    Fumagalli, M., G. Pravettoni, and A. Priori. 2015. Pedophilia 30 years after a traumatic brain injury. Neurological Sciences 36 (3): 481–482.CrossRefGoogle Scholar
  46. 46.
    Burns, J.M., and R.H. Swerdlow. 2003. Right orbitofrontal tumor with pedophilia symptom and constructional apraxia. Archives of Neurology 60 (3): 437–440.CrossRefGoogle Scholar
  47. 47.
    Gilbert, F., and F. Focquaert. 2015. Rethinking responsibility in offenders with acquired paedophilia: Punishment or treatment? International Journal of Law and Psychiatry 38: 51–60.CrossRefGoogle Scholar
  48. 48.
    Scarpazza, C., M.S. De Simone, G. Sartori, and A. Mechelli. 2013. When the single matters more than the group: Very high false positive rates in single case voxel based morphometry. NeuroImage 70: 175–188.CrossRefGoogle Scholar
  49. 49.
    Slumin, V., T. Barrick, M. Howard, E. Cezayirli, A. Mayes, and N. Roberts. 2002. Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. NeuroImage 17 (3): 1613–1622.CrossRefGoogle Scholar
  50. 50.
    Sutcubasi Kaya, B., Metin, B., Tas, Z.C., Buyukaslan, A., Soysal, A., Hatiloglu, D., Tarhan, N. 2016. Gray matter increase in motor cortex in pediatric ADHD: A voxel based morphometry study. Journal of Attention Disorders. Google Scholar
  51. 51.
    Kozlowska, K., K.R. Griffiths, S.L. Foster, J. Linton, L.M. Williams, and M.S. Korgaonkar. 2017. Grey matter abnormalities in children and adolescents with functional neurological symptoms disorder. Neuroimage Clinical 15: 306–314.CrossRefGoogle Scholar
  52. 52.
    Davis, K. 2017. The brain defense. Murder in Manhattan and the dawn of neuroscience in America’s courtrooms. London: Penguin Press.Google Scholar
  53. 53.
    Farisco, M., and C. Petrini. 2012. The impact of neuroscience and genetics on the law: A recent Italian case. Neuroethics 5 (3): 317–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of General PsychologyUniversity of PaduaPadovaItaly
  2. 2.Department of Psychosis Studies, Institute of Psychiatry, Psychosis and NeuroscienceKing’s College LondonLondonUK
  3. 3.Department of Clinical and Experimental MedicineUniversity of Pisa School of MedicinePisaItaly
  4. 4.IMT School for Advanced StudiesLuccaItaly

Personalised recommendations