, Volume 11, Issue 3, pp 245–257 | Cite as

Decision-Making and Self-Governing Systems

  • Adina L. Roskies
Original Paper


Neuroscience has illuminated the neural basis of decision-making, providing evidence that supports specific models of decision-processes. These models typically are quite mechanical, the realization of abstract mathematical “diffusion to bound” models. While effective decision-making seems to be essential for sophisticated behavior, central to an account of freedom, and a necessary characteristic of self-governing systems, it is not clear how the simple models neuroscience inspires can underlie the notion of self-governance. Drawing from both philosophy and neuroscience I explore ways in which the proposed decision-making architectures can play a role in systems that can reasonably be thought of as “self-governing”.


Self-control Agency Prospection Free will Determinism 



This article was made possible through the support of grants from the NEH and the John Templeton Foundation via a Philosophy and Science of Self-Control grant. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the granting agencies.


  1. 1.
    Coyne, J. A. 2012. Column: Why you don’t really have free will –, USA Today.
  2. 2.
    Cashmore, A.R. 2010. The Lucretian swerve: The biological basis of human behavior and the criminal justice system. Proceedings of the National Academy of Sciences 107(10): 4499–4504.CrossRefGoogle Scholar
  3. 3.
    Brembs, B. 2010. Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates. Proceedings of the Royal Society of London - Series B: Biological Sciences. doi: 10.1098/rspb.2010.2325.Google Scholar
  4. 4.
    Roskies, A.L. 2006. Neuroscientific challenges to free will and responsibility. Trends in Cognitive Sciences 10(9): 419–423.CrossRefGoogle Scholar
  5. 5.
    Craver, C.F. 2007. Explaining the brain: Mechanisms and the Mosaic unity of neuroscience. OXFORD: Clarendon Press.Google Scholar
  6. 6.
    Roskies, A. L. 2014. Can neuroscience resolve issues about free will? In Moral psychology volume 4: free will and moral responsibility, vol. 4, MIT Press.Google Scholar
  7. 7.
    Nahmias, E. 2011. Intuitions about free will, determinism, and bypassing. In The Oxford handbook of free will, 2nd ed., ed R. Kane, Oxford University Press.Google Scholar
  8. 8.
    Murray, D., and E. Nahmias. 2014. Explaining Away Incompatibilist Intuitions. Philosophy and Phenomenological Research 88(2): 434–467.CrossRefGoogle Scholar
  9. 9.
    Descartes, R. 1641. Meditations on first philosophy. Cambridge: Cambridge University Press.Google Scholar
  10. 10.
    Newsome, W.T., K.H. Britten, and J.A. Movshon. 1989. Neuronal correlates of a perceptual decision. Nature 341(6237): 52–54.CrossRefGoogle Scholar
  11. 11.
    Britten, K.H., W.T. Newsome, M.N. Shadlen, S. Celebrini, and J.A. Movshon. 1996. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience 13(1): 87–100.CrossRefGoogle Scholar
  12. 12.
    Ditterich, J., M.E. Mazurek, and M.N. Shadlen. 2003. Microstimulation of visual cortex affects the speed of perceptual decisions. Nature Neuroscience 6(8): 891–898.CrossRefGoogle Scholar
  13. 13.
    Hanks, T.D., J. Ditterich, and M.N. Shadlen. 2006. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nature Neuroscience 9(5): 682–689.CrossRefGoogle Scholar
  14. 14.
    Gold, J.I., and M.N. Shadlen. 2007. The neural basis of decision making. Annual Review of Neuroscience 30(1): 535–574.CrossRefGoogle Scholar
  15. 15.
    Colby, C.L., and M.E. Goldberg. 1999. Space and attention in parietal cortex. Annual Review of Neuroscience 22(1): 319–349.CrossRefGoogle Scholar
  16. 16.
    Mazzoni, P., R.M. Bracewell, S. Barash, and R.A. Andersen. 1996. Motor intention activity in the macaque’s lateral intraparietal area. I. Dissociation of motor plan from sensory memory. Journal of Neurophysiology 76(3): 1439–1456.CrossRefGoogle Scholar
  17. 17.
    Snyder, L.H., A.P. Batista, and R.A. Andersen. 2000. Intention-related activity in the posterior parietal cortex: a review. Vision Research 40(10–12): 1433–1441.CrossRefGoogle Scholar
  18. 18.
    Roitman, J.D., and M.N. Shadlen. 2002. Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task. The Journal of Neuroscience 22(21): 9475–9489.CrossRefGoogle Scholar
  19. 19.
    Huk, A.C., and M.N. Shadlen. 2005. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25(45): 10420–10436.CrossRefGoogle Scholar
  20. 20.
    Busemeyer, J.R., R.K. Jessup, J.G. Johnson, and J.T. Townsend. 2006. Building bridges between neural models and complex decision making behaviour. Neural Networks 19(8): 1047–1058.CrossRefGoogle Scholar
  21. 21.
    Heekeren, H.R., S. Marrett, P.A. Bandettini, and L.G. Ungerleider. 2004. A general mechanism for perceptual decision-making in the human brain. Nature 431(7010): 859–862.CrossRefGoogle Scholar
  22. 22.
    Rorie, A.E., and W.T. Newsome. 2005. A general mechanism for decision-making in the human brain? Trends in Cognitive Sciences 9(2): 41–43.CrossRefGoogle Scholar
  23. 23.
    Cui, H., and R.A. Andersen. 2011. Different Representations of Potential and Selected Motor Plans by Distinct Parietal Areas. The Journal of Neuroscience 31(49): 18130–18136.CrossRefGoogle Scholar
  24. 24.
    Standage, D., G. Blohm, and M.C. Dorris. 2014. On the neural implementation of the speed-accuracy trade-off. Decision Neuroscience 8: 236.Google Scholar
  25. 25.
    Kiani, R., C.J. Cueva, J.B. Reppas, and W.T. Newsome. 2014. Dynamics of Neural Population Responses in Prefrontal Cortex Indicate Changes of Mind on Single Trials. Current Biology 24(13): 1542–1547.CrossRefGoogle Scholar
  26. 26.
    Kiani, R., and M.N. Shadlen. 2009. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324(5928): 759–764.CrossRefGoogle Scholar
  27. 27.
    Shadlen, M.N., and A.L. Roskies. 2012. The neurobiology of decision-making and responsibility: reconciling mechanism and mindedness,” Front. Decision Sciences 6(56): 1–12.Google Scholar
  28. 28.
    Neubert, F.-X., R.B. Mars, J. Sallet, and M.F.S. Rushworth. 2015. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proceedings of the National Academy of Sciences 112(20): E2695–E2704.CrossRefGoogle Scholar
  29. 29.
    Wallis, J.D. 2012. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nature Neuroscience 15(1): 13–19.CrossRefGoogle Scholar
  30. 30.
    Fisher, C.M. 2001. If there were no free will. Medical Hypotheses 56(3): 364–366.CrossRefGoogle Scholar
  31. 31.
    Sternberg, E.J. 2010. My brain made me do it: the rise of neuroscience and the threat to moral responsibility. Amherst: Prometheus Books.Google Scholar
  32. 32.
    Montague, P.R. 2008. Free will. Current Biology 18(14): R584–R585.CrossRefGoogle Scholar
  33. 33.
    Spinney, L. 2004. I’m not guilty - but my brain is. The Guardian. August 12.Google Scholar
  34. 34.
    Dennett, D.C. 1989. The intentional stance. MIT: Reprint edition.Google Scholar
  35. 35.
    McGeer, V., and P. Pettit. 2002. The self-regulating mind. Language & Communication 22: 281–299.CrossRefGoogle Scholar
  36. 36.
    Ainslie, G. 2011. Free will as recursive self-prediction: does a deterministic mechanism reduce responsibility? In Addiction and Responsibility, eds. J. Poland and G. Graham, 55–88. The MIT Press.Google Scholar
  37. 37.
    Jocham, G., P.M. Furlong, I.L. Kröger, M.C. Kahn, L.T. Hunt, and T.E.J. Behrens. 2014. Dissociable contributions of ventromedial prefrontal and posterior parietal cortex to value-guided choice. NeuroImage 100: 498–506.CrossRefGoogle Scholar
  38. 38.
    Waskom, M.L., D. Kumaran, A.M. Gordon, J. Rissman, and A.D. Wagner. 2014. Frontoparietal Representations of Task Context Support the Flexible Control of Goal-Directed Cognition. The Journal of Neuroscience 34(32): 10743–10755.CrossRefGoogle Scholar
  39. 39.
    Woolgar, A., S. Afshar, M.A. Williams, and A.N. Rich. 2015. Flexible coding of task rules in Frontoparietal cortex: an adaptive system for flexible cognitive control. Journal of Cognitive Neuroscience 27(10): 1895–1911.CrossRefGoogle Scholar
  40. 40.
    Fitzgerald, J.K., S.K. Swaminathan, and D.J. Freedman. 2012. Visual categorization and the parietal cortex. Frontiers in Integrative Neuroscience 6: 18.CrossRefGoogle Scholar
  41. 41.
    Crowe, D.A., S.J. Goodwin, R.K. Blackman, S. Sakellaridi, S.R. Sponheim, A.W. MacDonald Iii, and M.V. Chafee. 2013. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nature Neuroscience 16(10): 1484–1491.CrossRefGoogle Scholar
  42. 42.
    Schultz, W. 2015. Neuronal reward and decision signals: from theories to data. Physiological Reviews 95(3): 853–951.CrossRefGoogle Scholar
  43. 43.
    Louie, K., and P.W. Glimcher. 2012. Efficient coding and the neural representation of value. Annals of the New York Academy of Sciences 1251(1): 13–32.CrossRefGoogle Scholar
  44. 44.
    Botvinick, M., and T. Braver. 2015. Motivation and cognitive control: from behavior to neural mechanism. Annual Review of Psychology 66(1): 83–113.CrossRefGoogle Scholar
  45. 45.
    Bronfman, Z.Z., N. Brezis, R. Moran, K. Tsetsos, T. Donner, and M. Usher. 2015. Decisions reduce sensitivity to subsequent information. Proceedings of the Royal Society B 282(1810). doi: 10.1098/rspb.2015.0228.
  46. 46.
    Glimcher, P.W., and E. Fehr. 2013. Neuroeconomics, second edition: decision making and the brain, 2 edn. Amsterdam: Academic Press.Google Scholar
  47. 47.
    Schultz, W. 2010. Subjective neuronal coding of reward: temporal value discounting and risk. The European Journal of Neuroscience 31(12): 2124–2135.CrossRefGoogle Scholar
  48. 48.
    Platt, M.L., and P.W. Glimcher. 1999. Neural correlates of decision variables in parietal cortex. Nature 400(6741): 233–238.CrossRefGoogle Scholar
  49. 49.
    Smith, D.V., B.Y. Hayden, T.-K. Truong, A.W. Song, M.L. Platt, and S.A. Huettel. 2010. Distinct Value Signals in Anterior and Posterior Ventromedial Prefrontal Cortex. The Journal of Neuroscience 30(7): 2490–2495.CrossRefGoogle Scholar
  50. 50.
    McNamee, D., A. Rangel, and J.P. O’Doherty. 2013. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. Nature Neuroscience 16(4): 479–485.CrossRefGoogle Scholar
  51. 51.
    Steinbeis, N., J. Haushofer, E. Fehr, and T. Singer. 2016. Development of behavioral control and associated vmPFC–DLPFC connectivity explains children’s increased resistance to temptation in intertemporal choice. Cerebral Cortex 26(1): 32–42.CrossRefGoogle Scholar
  52. 52.
    de Lange, F.P., S. van Gaal, V.A.F. Lamme, and S. Dehaene. 2011. How awareness changes the relative weights of evidence during human decision-making. PLoS Biology 9(11): e1001203.CrossRefGoogle Scholar
  53. 53.
    Herrington, T.M., and J.A. Assad. 2009. Neural Activity in the Middle Temporal Area and Lateral Intraparietal Area during Endogenously Cued Shifts of Attention. The Journal of Neuroscience 29(45): 14160–14176.CrossRefGoogle Scholar
  54. 54.
    Hanks, T.D., C.D. Kopec, B.W. Brunton, C.A. Duan, J.C. Erlich, and C.D. Brody. 2015. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520(7546): 220–223.CrossRefGoogle Scholar
  55. 55.
    Mante, V., D. Sussillo, K.V. Shenoy, and W.T. Newsome. 2013. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503(7474): 78–84.CrossRefGoogle Scholar
  56. 56.
    Roy, J.E., T.J. Buschman, and E.K. Miller. 2014. PFC neurons reflect categorical decisions about ambiguous stimuli. Journal of Cognitive Neuroscience 26(6): 1283–1291.CrossRefGoogle Scholar
  57. 57.
    Buschman, T.J., and E.K. Miller. 2014. Goal-direction and top-down control. Philosophical Transactions of the Royal Society B 369(1655): 20130471.CrossRefGoogle Scholar
  58. 58.
    von Helversen, B., L. Karlsson, B. Rasch, and J. Rieskamp. 2014. Neural substrates of similarity and rule-based strategies in judgment. Frontiers in Human Neuroscience 8: 809.Google Scholar
  59. 59.
    Etzel, J.A., M.W. Cole, J.M. Zacks, K.N. Kay, and T.S. Braver. 2015. Reward motivation enhances task coding in frontoparietal cortex. Cerebral Cortex. doi: 10.1093/cercor/bhu327.Google Scholar
  60. 60.
    Rainer, G., W.F. Asaad, and E.K. Miller. 1998. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393(6685): 577–579.CrossRefGoogle Scholar
  61. 61.
    Dosenbach, N.U.F., K.M. Visscher, E.D. Palmer, F.M. Miezin, K.K. Wenger, H.C. Kang, E.D. Burgund, A.L. Grimes, B.L. Schlaggar, and S.E. Petersen. 2006. A Core System for the Implementation of Task Sets. Neuron 50(5): 799–812.CrossRefGoogle Scholar
  62. 62.
    McKee, J.L., M. Riesenhuber, E.K. Miller, and D.J. Freedman. 2014. Task Dependence of Visual and Category Representations in Prefrontal and Inferior Temporal Cortices. The Journal of Neuroscience 34(48): 16065–16075.CrossRefGoogle Scholar
  63. 63.
    Wisniewski, D., C. Reverberi, A. Tusche, and J.-D. Haynes. 2015. The Neural Representation of Voluntary Task-Set Selection in Dynamic Environments. Cerebral Cortex 25(12): 4715–4726.CrossRefGoogle Scholar
  64. 64.
    Standage, D., D.-H. Wang, and G. Blohm. 2014. Neural dynamics implement a flexible decision bound with a fixed firing rate for choice: a model-based hypothesis. Decision Neuroscience 8: 318.Google Scholar
  65. 65.
    Drugowitsch, J., R. Moreno-Bote, A.K. Churchland, M.N. Shadlen, and A. Pouget. 2012. The Cost of Accumulating Evidence in Perceptual Decision Making. The Journal of Neuroscience 32(11): 3612–3628.CrossRefGoogle Scholar
  66. 66.
    Churchland, A.K., and J. Ditterich. 2012. New advances in understanding decisions among multiple alternatives. Current Opinion in Neurobiology 22(6): 920–926.CrossRefGoogle Scholar
  67. 67.
    Churchland, A.K., R. Kiani, and M.N. Shadlen. 2008. Decision-making with multiple alternatives. Nature Neuroscience 11(6): 693–702.CrossRefGoogle Scholar
  68. 68.
    Buckner, R.L., and D.C. Carroll. 2007. Self-projection and the brain. Trends in Cognitive Sciences 11(2): 49–57.CrossRefGoogle Scholar
  69. 69.
    Mullally, S.L., and E.A. Maguire. 2014. Memory, Imagination, and Predicting the Future A Common Brain Mechanism? The Neuroscientist 20(3): 220–234.CrossRefGoogle Scholar
  70. 70.
    Szpunar, K.K., R.N. Spreng, and D.L. Schacter. 2014. A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proceedings of the National Academy of Sciences 111(52): 18414–18421.CrossRefGoogle Scholar
  71. 71.
    Ainslie, G., and J.R. Monterosso. 2003. Building Blocks of Self-Control: Increased Tolerance for Delay with Bundled Rewards. Journal of the Experimental Analysis of Behavior 79(1): 37–48.CrossRefGoogle Scholar
  72. 72.
    Ainslie, G. 2013. Intertemporal bargaining in addiction. Frontiers in Psychology 4: 1-5.Google Scholar
  73. 73.
    Liu, L., T. Feng, J. Chen, and H. Li. 2013. The value of emotion: how does episodic prospection modulate delay discounting? PLoS ONE 8(11): e81717.CrossRefGoogle Scholar
  74. 74.
    Jimura, K., M.S. Chushak, and T.S. Braver. 2013. Impulsivity and Self-Control during Intertemporal Decision Making Linked to the Neural Dynamics of Reward Value Representation. The Journal of Neuroscience 33(1): 344–357.CrossRefGoogle Scholar
  75. 75.
    Sasse, L.K., J. Peters, C. Büchel, and S. Brassen. 2015. Effects of prospective thinking on intertemporal choice: The role of familiarity. Human Brain Mapping 36(10): 4210–4221.CrossRefGoogle Scholar
  76. 76.
    Frankfurt, H.G. 1969. Alternate possibilities and moral responsibility. Journal of Philosophy 66(23): 829–839.CrossRefGoogle Scholar
  77. 77.
    Frankfurt, H.G. 1971. Freedom of the will and the concept of a person. Journal of Philosophy 68(1): 5–20.CrossRefGoogle Scholar
  78. 78.
    Kim, J. 2000. Mind in a physical world: an essay on the mind-body problem and mental causation, Reprint edition. A Bradford Book.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhilosophyDartmouth CollegeHanoverUSA

Personalised recommendations