Advertisement

Neuroethics

, Volume 6, Issue 3, pp 429–434 | Cite as

Bonding Brains to Machines: Ethical Implications of Electroceuticals for the Human Brain

  • Jens Clausen
Original Paper

Abstract

Novel neurotechnologies like deep brain stimulation and brain-computer interfaces promise clinical benefits for severely suffering patients. Nevertheless, such electroceuticals raise several ethical issues on different levels: while on the level of clinical neuroethics issues with direct relevance for diagnosis and treatment have to be discussed, on the level of research neuroethics questions regarding research and development of these technological devices like investigating new targets and different diseases as well as thorough inclusion criteria are dealt with. On the level of theoretical neuroethics more general questions are examined including anthropological considerations on “normal” human functioning as well as implications on personality, personal identity and authenticity. This paper presents a brief review on ethical issues of deep brain stimulation and brain computer interfacing and simultaneously introduces to this themed issue with thirteen contributions dealing from different perspectives with ethical implications of electroceuticals for the human brain.

Keywords

Deep brain stimulation Brain computer interface Medical ethics Research ethics Enhancement 

Notes

Acknowledgment

This special issue traces back to the panel “Bonding Brian to Machines” at the World Congress for Bioethics in Singapore 2010. A call for abstracts on ethical issues in DBS and articles submitted independently to this journal completed the contribution at hand. The author wants to thank all speakers at the Singapore panel and all contributors to this special issue.

References

  1. 1.
    Famm, K., B. Litt, K.J. Tracey, E.S. Boyden, and M. Slaoui. 2013. A jump-start for electroceuticals. Nature 496(7444): 159–161. doi: 10.1038/496159a.CrossRefGoogle Scholar
  2. 2.
    Deuschl, G., C. Schade-Brittinger, P. Krack, J. Volkmann, H. Schafer, K. Bötzel, C. Daniels, et al. 2006. A randomized trial of deep-brain stimulation for Parkinson’s disease. The New England Journal of Medicine 355(9): 896–908.CrossRefGoogle Scholar
  3. 3.
    Deuschl, G., J. Raethjen, H. Hellriegel, and R. Elble. 2011. Treatment of patients with essential tremor. Lancet Neurology 10(2): 148–161.CrossRefGoogle Scholar
  4. 4.
    Mehrkens, J.H., K. Botzel, U. Steude, K. Zeitler, A. Schnitzler, V. Sturm, and J. Voges. 2009. Long-term efficacy and safety of chronic globus pallidus internus stimulation in different types of primary dystonia. Stereotactic and Functional Neurosurgery 87(1): 8–17.CrossRefGoogle Scholar
  5. 5.
    Schuepbach, W.M., J. Rau, K. Knudsen, J. Volkmann, P. Krack, L. Timmermann, T.D. Halbig, et al. 2013. Neurostimulation for Parkinson’s disease with early motor complications. The New England Journal of Medicine 368(7): 610–622. doi: 10.1056/NEJMoa1205158.CrossRefGoogle Scholar
  6. 6.
    Andrade, P., L.H. Noblesse, Y. Temel, L. Ackermans, L.W. Lim, H.W. Steinbusch, and V. Visser-Vandewalle. 2010. Neurostimulatory and ablative treatment options in major depressive disorder: a systematic review. Acta Neurochirurgica 152(4): 565–577.CrossRefGoogle Scholar
  7. 7.
    Greenberg, B.D., S.L. Rauch, and S.N. Haber. 2010. Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology 35(1): 317–336.CrossRefGoogle Scholar
  8. 8.
    Laxton, A.W., D.F. Tang-Wai, M.P. McAndrews, D. Zumsteg, R. Wennberg, R. Keren, J. Wherrett, et al. 2010. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Annals of Neurology 68(4): 521–534.CrossRefGoogle Scholar
  9. 9.
    Hamani, C., M.P. McAndrews, M. Cohn, M. Oh, D. Zumsteg, C.M. Shapiro, R.A. Wennberg, and A.M. Lozano. 2008. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Annals of Neurology 63(1): 119–123.CrossRefGoogle Scholar
  10. 10.
    Schiff, N.D., J.T. Giacino, K. Kalmar, J.D. Victor, K. Baker, M. Gerber, B. Fritz, et al. 2007. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448(7153): 600–603.CrossRefGoogle Scholar
  11. 11.
    Müller, U.J., V. Sturm, J. Voges, H.J. Heinze, I. Galazky, M. Heldmann, H. Scheich, and B. Bogerts. 2009. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 42(6): 288–291.CrossRefGoogle Scholar
  12. 12.
    Bell, E., G. Mathieu, and E. Racine. 2009. Preparing the ethical future of deep brain stimulation. Surgical Neurology 72(6): 577–586. discussion 586.CrossRefGoogle Scholar
  13. 13.
    Clausen, J. 2009. Man, machine and in between. Nature 457(7233): 1080–1081.CrossRefGoogle Scholar
  14. 14.
    Clausen, J. 2010. Ethical brain stimulation – neuroethics of deep brain stimulation in research and clinical practice. European Journal of Neuroscience 32(7): 1152–1162.CrossRefGoogle Scholar
  15. 15.
    Clausen, J. 2011. Conceptual and ethical issues with brain-hardware devices. Current Opinion in Psychiatry 24(6): 495–501. doi: 10.1097/YCO.0b013e32834bb8ca.Google Scholar
  16. 16.
    Schermer, M. 2011. Ethical issues in deep brain stimulation. Frontiers in Integrative Neuroscience 5: 17.CrossRefGoogle Scholar
  17. 17.
    Synofzik, M., and T.E. Schlaepfer. 2011. Electrodes in the brain–ethical criteria for research and treatment with deep brain stimulation for neuropsychiatric disorders. Brain Stimulation 4(1): 7–16.CrossRefGoogle Scholar
  18. 18.
    Synofzik, M., and T.E. Schlaepfer. 2008. Stimulating personality: ethical criteria for deep brain stimulation in psychiatric patients and for enhancement purposes. Biotechnology Journal 3(12): 1511–1520.CrossRefGoogle Scholar
  19. 19.
    Schermer, Maartje. 2013. Health, happieness and human enhancement - dealing with unexpected effects of deep brain stimulation. Neuroethics 6 (3). doi: 10.1007/s12152-011-9097-5.
  20. 20.
    Focquaert, F. 2013. Deep brain stimulation in children: parental authority versus shared decision-making. Neuroethics 6(3).Google Scholar
  21. 21.
    Johansson, Veronica, Martin Garwicz, Martin Kanje, Helena Röcklingsberg, Jens Schouenborg, Anders Tingström, and Ulf Görman. 2013. Byond blind optimism and unfounded fears: deep brain stimulation for treatment resistant depression. Neuroethics 6 (3). doi: 10.1007/s12152-011-9112-x.
  22. 22.
    Kraemer, Felicitas. 2013. Me, myself and my brain implant: deep brain stimulation raises questions of personal authenticity and alienation. Neuroethics 6 (3). doi:  10.107/s12152-011-9115-7.
  23. 23.
    Schuepbach, M., M. Gargiulo, M.L. Welter, C. Luc Mallet, J.L. Behar, D. Houeto, D. Maltete, V. Mesnage, and Y. Agid. 2006. Neurosurgery in Parkinson disease: a distressed mind in a repaired body? Neurology 66(12): 1811–1816.CrossRefGoogle Scholar
  24. 24.
    Witt, Karsten, Jens Kuhn, Lars Timmermann, and Christiane Woopen. 2013. Deep brain stimulation and the search for identity. Neuroethics 6 (3). doi: 10.1007/s12152-011-9100-1.
  25. 25.
    Baylis, F. 2013. “I am Who I Am”: on the perceived threats to personal identity from deep brain stimulation. Neuroethics 6(3).Google Scholar
  26. 26.
    Klaming, L., and P. Haselager. 2013. Did my brain implant make me do it? questions raised by DBS regarding psychological continuity, responsibility for action and mental competence. Neuroethics 6(3). doi: 10.1007/s12152-010-9093-1.
  27. 27.
    van Gerven, M., J. Farquhar, R. Schaefer, R. Vlek, J. Geuze, A. Nijholt, Nick Ramsey, et al. 2009. The brain-computer interface cycle. Journal of Neural Engineering 6(4): 041001.CrossRefGoogle Scholar
  28. 28.
    Birbaumer, N., and L.G. Cohen. 2007. Brain-computer interfaces: communication and restoration of movement in paralysis. The Journal of Physiology 579(3): 621–636.CrossRefGoogle Scholar
  29. 29.
    Collinger, J.L., B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J. McMorland, M. Velliste, M.L. Boninger, and A.B. Schwartz. 2013. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866): 557–564. doi: 10.1016/S0140-6736(12)61816-9.CrossRefGoogle Scholar
  30. 30.
    Arnold, L.E., N. Lofthouse, S. Hersch, X. Pan, E. Hurt, B. Bates, K. Kassouf, S. Moone, and C. Grantier. 2013. EEG Neurofeedback for ADHD: Double-Blind Sham-Controlled Randomized Pilot Feasibility Trial. J Atten Disord 17(5): 410–419. doi: 10.1177/1087054712446173.CrossRefGoogle Scholar
  31. 31.
    Jotterand, Fabrice, and James Giordano. 2014 (in press). Real-time Functional Magnetic Resonance Imaging (rtfMRI)-Brain Computer Interfacing in the Assessment and Treatment of Psychopathy : Potential and Challenges. In Handbook of Neuroethics, eds. Jens Clausen, and Neil Levy. Berlin: Springer.Google Scholar
  32. 32.
    Clausen, J. 2008. Moving minds: ethical aspects of neural motor prostheses. Biotechnology Journal 3(12): 1493–1501.CrossRefGoogle Scholar
  33. 33.
    O’Brolcháin, Fiachra, and Bert Gordijn. 2014 in press. BCIs for enhancement purposes: ethical implications. In Handbook of Neuroethics, eds. Jens Clausen, and Neil Levy. Berlin: Springer.Google Scholar
  34. 34.
    Tamburrini, G. 2009. Brain to computer communication: ethical perspectives on interaction models. Neuroethics 2(3): 137–149.CrossRefGoogle Scholar
  35. 35.
    Matthias, A. 2004. The responsibility gap: ascribing responsibility for the actions of learning automata. Ethics and Information Technology 6(3): 175–183.CrossRefGoogle Scholar
  36. 36.
    Holm, Søren, and Teck Chuan Voo. 2010. Brain-Machine Interfaces and Personal Responsibility for Action - Maybe Not As Complicated After All. Studies in Ethics, Law, and Technology 4 (3):Article 7.Google Scholar
  37. 37.
    Phillips, L. H. 2006. Communicating with the ‘locked-in’ patient: because you can so it, should you? Neurology Vol. 67 (3): 380-381Google Scholar
  38. 38.
    Bruno, M.-A., L.J. Bernheim, D. Ledoux, F. Pellas, A. Demertzi, and S. Laureys. 2011. A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients: happy majority, miserable minority. BMJ Open. doi: 10.1136/bmjopen-2010-000039.Google Scholar
  39. 39.
    Vlek, R.J., D. Steines, D. Szibbo, A. Kubler, M.J. Schneider, P. Haselager, and F. Nijboer. 2012. Ethical issues in brain-computer interface research, development, and dissemination. Journal of Neurologic Physical Therapy 36(2): 94–99. doi: 10.1097/NPT.0b013e31825064cc.CrossRefGoogle Scholar
  40. 40.
    Neijboer, F., J. Clausen, B.Z. Allison, and P. Haselager. 2013. The asilomar survey: stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics 6(3). doi: 10.1007/s12152-011-9132-6.
  41. 41.
    Kyselo, M. 2013. Locked-in Syndrome, and BCI – Towards an enactive approach of the self. Neuroethics 6(3).Google Scholar
  42. 42.
    Fenton, A., and S. Alpert. 2008. Extending our view on using BCIs for locked-in syndrome. Neuroethics 1: 119–132.CrossRefGoogle Scholar
  43. 43.
    Buller, T. 2013. Neurotechnology, Invasiveness and the extended mind. Neuroethics 6(3).Google Scholar
  44. 44.
    Wolbring, G. 2013. Hearing beyond the normal enabled by therapeutic devices: the role of the recipient and the hearing profession. Neuroethics 6(3). doi: 10.1007/s12152-011-9120-x.
  45. 45.
    Jebari, Karim. 2013. Brain Machine Interfaces and Human Enhancement - An Ethical Review Neuroethics 6 (3).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Werner Reichardt Centre for Integrative Neuroscience (CIN)TübingenGermany
  2. 2.International Centre for Ethics in Science and HumanitiesTübingenGermany
  3. 3.Institute for Ethics and History of MedicineTübingenGermany

Personalised recommendations