The Neurotechnological Cerebral Subject: Persistence of Implicit and Explicit Gender Norms in a Network of Change


Under the realm of neurocultures the concept of the cerebral subject emerges as the central category to define the self, socio-cultural interaction and behaviour. The brain is the reference for explaining cognitive processes and behaviour but at the same time the plastic brain is situated in current paradigms of (self)optimization on the market of meritocracy by means of neurotechnologies. This paper explores whether neurotechnological apparatuses may—due to their hybridity and malleability—bear potentials for a change in gender based attributions that have been historically legitimized by apparently natural differences between women and men. Or, in contrast, which gendered ascriptions are (again) produced in theories and applications according to the normative demands for the bio-techno-social cerebral subject situated in neoliberal power relations. An exploration of three main fields of current developments, the neurotechnological apparatus of brain-computer-interfaces, the technologies for brain tuning and the discourses in neuroeconomics, reveals first insights on these gender aspects in reliance with the ethical/political debate. Moreover, this paper concretizes questions for further research on gender and ethical aspects in the field of neurotechnologies.

This is a preview of subscription content, access via your institution.


  1. 1.

    More and more, this type of reflective analysis enters high-ranked neuroscience journals, as for example [20] in Brain Research Reviews or [21] in Brain and Language, and it improves the discussion about influences of the empirical setup, of the techniques of data acquisition and data analysis, or of the use of statistical procedures on research findings concerning brain and gender.

  2. 2.

    Nonetheless, brain images do not loose their seemingly objective power in scientific and even more in popular discourse, but this analysis would go beyond the scope of this paper, for overview see [26].

  3. 3.

    This BCI technology uses changes in particular brain signals (P300) to be transformed into control signals for the devices.

  4. 4.

    I use the term ‘promise’ here in reference to the review of Irving Kirsch and colleagues [69], who stated that Prozac only shoes placebo effects in cases of moderate depression. Nevertheless the Prozac market seams to be more or less unaffected by these results until now.


  1. 1.

    Dimitrios, K., A.K. Barbey, Michael Su, G. Zamboni, F. Krueger, and J. Grafman. 2009. Cognitive and neural foundations of religious belief. Proceedings of the National Academy of Sciences 106(12): 4876–4881.

    Article  Google Scholar 

  2. 2.

    Savic, I., and P. Lindström. 2008. PET and MRI show differences in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects. Proceedings of the National Academy of Sciences 105(27): 9403–9408.

    Article  Google Scholar 

  3. 3.

    Ortega, F., and F. Vidal. 2007. Mapping the cerebral subject in contemporary culture. RECIIS 1(2): 255–259.

    Google Scholar 

  4. 4.

    Kaiser, A., E. Kuenzli, D. Zappatore, and C. Nitsch. 2007. On females’ lateral and males’ bilateral activation during language production: A fMRI study. International Journal of Psychophysiology 63: 192–198.

    Article  Google Scholar 

  5. 5.

    Maguire, E.M., D.G. Gadian, I.S. Johnsrude, C.D. Good, J. Ashburner, R.S.J. Frackowiak, and C.D. Frith. 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Science 97(6): 1–6.

    Google Scholar 

  6. 6.

    Bogdan, D., C. Gaser, V. Busch, G. Schuierer, U. Bogdahn, and A. May. 2004. Neuroplasticity: Changes in grey matter induced by training. Nature 427: 311–312.

    Article  Google Scholar 

  7. 7.

    Haynes, J.-D., and G. Rees. 2006. Decoding mental states from brain activity in humans. Nature Reviews Neuroscience 7(7): 523–34.

    Article  Google Scholar 

  8. 8.

    Roth, G., and K.-J. Grün (eds.). 2006. Das Gehirn und seine Freiheit. Göttingen: Vanderhoek & Ruprecht.

    Google Scholar 

  9. 9.

    Maasen, S., and B. Sutter (eds.). 2007. On willing selves. Neoliberal politics vis-à-vis the neuroscientific challenge. New York: Palgrave Mcmillan.

    Google Scholar 

  10. 10.

    Rose, S. 2005. The future of the brain: The promise and perils of tomorrow’s neuroscience. Oxford: Oxford Univ. Press.

    Google Scholar 

  11. 11.

    Clausen, J. 2009. Man, machine and in between. Nature 457: 1080–1081.

    Article  Google Scholar 

  12. 12.

    Schmitz, S. 2010. Sex, gender, and the brain—biological determinism versus socio-cultural constructivism. In Gender and sex in biomedicine. Theories, methodologies, results, ed. I. Klinge and C. Wiesemann, 57–76. Göttingen: Universitätsverlag Göttingen.

    Google Scholar 

  13. 13.

    Sommer, I.E., A. Aleman, A. Bouma, and R.S. Kahn. 2004. Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies. Brain 127: 1845–1852.

    Article  Google Scholar 

  14. 14.

    Sommer, I.E., A. Aleman, M. Somers, M.P. Boks, and R.S. Kahn. 2008. Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Research 1206: 76–88.

    Article  Google Scholar 

  15. 15.

    Emanuele, C., and G. Louse. 2004. Gender differences in spatial orientation: A review. Journal of Environmental Psychology 24: 329–340.

    Article  Google Scholar 

  16. 16.

    Lavenex, P.B., and P. Pierre Lavenex. 2010. Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment. Behavioural Brain Research 207: 125–137.

    Article  Google Scholar 

  17. 17.

    Spelke, E.S. 2005. Sex differences in intrinsic aptitudes for mathematics and science? A critical review. American Psychologist 60: 950–958.

    Article  Google Scholar 

  18. 18.

    Else-Quest, N.M., J.S. Hyde, and M.C. Linn. 2010. Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin 136: 103–127.

    Article  Google Scholar 

  19. 19.

    Bishop, K.M., and D. Wahlsten. 1997. Sex differences in the human Corpus Callosum: Myth or reality? Neuroscience & Biobehavioral Reviews 21(5): 581–601.

    Article  Google Scholar 

  20. 20.

    Kaiser, A., S. Haller, S. Schmitz, and C. Nitsch. 2009. On sex/gender related similarities and differences in fMRI language research. Brain Research Reviews 61: 49–59.

    Article  Google Scholar 

  21. 21.

    Wallentin, M. 2009. Putative sex differences in verbal abilities and language cortex: A critical review. Brain and Language 108: 175–183.

    Article  Google Scholar 

  22. 22.

    Fausto-Sterling, A. 2000. Sexing the body. Gender politics and the construction of sexuality. New York: Basic Books.

    Google Scholar 

  23. 23.

    Beaulieu, A. 2002. Images are not the (only) truth: Brain mapping, visual knowledge, and iconoclasm. Science, Technology & Human Values 27(1): 53–86.

    Article  Google Scholar 

  24. 24.

    Burri, R.V. 2008. Doing images. Zur Praxis medizinischer Bilder. Bielefeld: transcript.

    Google Scholar 

  25. 25.

    Joyce, K. 2005. Appealing images: Magnetic resonance imaging and the production of authoritative knowledge. Social Studies of Sciences 35(3): 437–462.

    Article  Google Scholar 

  26. 26.

    McCabe, D.P., and A.D. Castel. 2008. Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition 107: 343–352.

    Article  Google Scholar 

  27. 27.

    Haraway, D. 1991. A cyborg manifesto: Science, technology, and socialist-feminism in the late twentieth century. In Simians, cyborgs and women: The reinvention of nature, ed. D. Haraway, 149–181. New York: Routledge.

    Google Scholar 

  28. 28.

    Barad, K. 2003. Posthumanist perfomativity: Toward an understanding of how matter comes to matter. Signs: Journal of Women in Culture and Society 28(3): 801–831.

    Article  Google Scholar 

  29. 29.

    Wolpaw, J.R., N. Birbaumer, D.J. McFarlanda, G. Pfurtscheller, and T.M. Vaughan. 2002. Brain–computer interfaces for communication and control. Clinical Neurophysiology 113: 767–791.

    Article  Google Scholar 

  30. 30.

    Karim, A.A., T. Hinterberger, J. Richter, J. Mellinger, N. Neumann, H. Flor, A. Kübler, and N. Birbaumer. 2006. Neural internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabilitation and Neural Repair 20: 508–515.

    Article  Google Scholar 

  31. 31.

    Birbaumer, N., N. Ghanayim, I.T. Hinterberger, B. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor. 1999. A spelling device for the paralyzed. Nature 398: 297–298.

    Article  Google Scholar 

  32. 32.

    Hochberg, L.R., M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, B. Almut, D. Chen, R.D. Penn, and J.P. Donoghue. 2006. Neural ensemble contol of prothetic devices by a human with tetraplegia. Nature 442: 64–172.

    Article  Google Scholar 

  33. 33.

    Nicolelis, M.A. 2003. Brain–machine interfaces to restore motor function and probe neural circuits. Nature Reviews 4: 417–422.

    Article  Google Scholar 

  34. 34.

    Nicolelis, M.A., and M.A. Lebedev. 2009. Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature Reviews Neurosciences 10: 530–540.

    Article  Google Scholar 

  35. 35.

    Lebedev, M., and M.A. Nicolelis. 2006. Brain-machine interfaces: Past, present and future. Trends in Neuroscience 29(9): 536–546.

    Article  Google Scholar 

  36. 36.

    Friedman, D., R. Leeb, G. Pfurtscheller, and M. Slater. Human-Computer Interaction Issues in Brain-Computer Interface and Virtual Reality. Accessed 28. November 2010.

  37. 37.

    Laboratory of Brain-Computer Interfaces. Accessed 28. November 2010.

  38. 38.

    Edlinger, G., C. Groenegress, R. Prückl, C. Guger, M. Slater. 2010. Goal orientated Brain-Computer interfaces for Control: a virtual smart home application study. BMC Neuroscience 11 (Suppl 1): P134. Accessed 28. November 2010.

  39. 39. Medical engineering. g.tec smart home control with Thoughts. Accessed 28. November 2010.

  40. 40.

    Crutzen, C.K.M. 2005. Intelligent Ambience between Heaven and Hell. In The gender politics of ICT, ed. J. Archibald, J. Emms, F. Grundy, J. Payne, and E. Turner, 29–50. Middlesex: Middlesex Univ. Press.

    Google Scholar 

  41. 41.

    Richard, J. 2008. A computer game headset that reads minds. 2008. Times Online 20.2.08. Accessed 28. November 2010.

  42. 42.

    Emotiv Brain Computer Interface Technology. Epoc System. Accessed 28. November 2010.

  43. 43.

    Hoag, H. 2003. Remote control. Nature 423: 796–798.

    Article  Google Scholar 

  44. 44.

    Ling, G. Revolutionizing Prosthetics. Accessed 28. November 2010.

  45. 45.

    Gibbs, A. 2008. Northrop Grumman-Led Team Awarded Contract to Develop Electronic Binoculars That Use Brain Activity to Detect Threats. Northrop Grumman News 06/08. Accessed 28. November 2010.

  46. 46.

    Cook, P.S. 2004. The Modernistic Posthuman Prophecy of Donna Haraway. In Social Change in the 21st Century Conference, Centre for Social Change Research. Queensland University of Technology. Accessed 28. November 2010.

  47. 47.

    Wassermann, E.M., C. Epstein, U. Ziemann, V. Walsh, T. Paus, and S.H. Linsaby (eds.). 2008. The Oxford handbook of transcranial stimulation. Oxford: Oxford Univ. Press.

    Google Scholar 

  48. 48.

    Birbaumer, N. 1999. Rain man’s revelations. Nature 399: 211–212.

    Article  Google Scholar 

  49. 49.

    Snyder, A., H. Homayoun Bahramali, T. Hawker, and D. Lohn Mitchell. 2006. Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception 35: 837–845.

    Article  Google Scholar 

  50. 50.

    Hamilton, R., S. Messing, and A. Chatterjee. 2011. Retinking the thinking cap: Ehtics of neural enhancement using non-invasive brain stimulation. Neurology 76: 187–193.

    Article  Google Scholar 

  51. 51.

    Karafyllis, N.C. 2008. Oneself as another? Autism and emotional intelligence as pop science, and the establishment of ‘essential’ differences. In Sexualized brains. Scientific modeling of emotional intelligence form a cultural perspective, ed. N.C. Karafyllis and G. Ulshöfer, 237–315. Cambridge: MIT.

    Google Scholar 

  52. 52.

    Treffert, D.E. 2009. The savant syndrome: An extraordinary condition. A synopsis: past, present, future. Philosophical Transactions of the Royal Society 364: 1351–1357.

    Article  Google Scholar 

  53. 53.

    Jordan-Young, R.M. 2010. Brain storm: The flaws in the science of sex differences. Cambridge: Harvard University Press.

    Google Scholar 

  54. 54.

    Baron-Cohen, S. 2003. The essential difference: The truth about the male and female brain. New York: Basic Books.

    Google Scholar 

  55. 55.

    Karafyllis, N.C. 2009. (M)othering the male brain. Das Geschlecht des technisierten Gehirns. In Die Technisierung des Gehirns. Ethische Aspekte aktueller Neurotechnologien, ed. J. Clausen and O. Müller. Paderborn: Mentis.

    Google Scholar 

  56. 56.

    Haraway, D. 1988. Situated knowledges: The science question in feminism and the privilege of partial perspective. Feminist Studies 14(3): 575–599.

    Article  Google Scholar 

  57. 57.

    Angel B., C. Pittenger, and E.R. Kandel. CREB, memory enhancement and the treatment of memory disorders: Promises, pitfalls and prospects. Informa Healthcare 7(1): 101–114.

  58. 58.

    Sahakian, B., and S. Morein-Zamir. 2007. Professors little helpers. Nature 450(20): 1157–1159.

    Article  Google Scholar 

  59. 59.

    Greely, H., B. Sahakian, J. Harris, R.C. Kessler, M. Gazzaniga, P. Campbell, and M.J. Farah. 2008. Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 456: 702–705.

    Article  Google Scholar 

  60. 60.

    Wolpe, P.R. 2002. Treatment, enhancement, and the ethics of neurotherapeutics. Brain and Cognition 50(3): 387–395.

    Article  Google Scholar 

  61. 61.

    Farah, M.J., J. Illez, R. Cook-Deegan, H. Gardner, E. Kandel, P. King, E. Parens, B. Sahakian, and P.R. Wolpe. 2004. Neurocognitive enhancement: What can we do and what should we do. Nature Reviews Neuroscience 5: 421–425.

    Article  Google Scholar 

  62. 62.

    Farah, M.J., and P.R. Wolpe. 2004. Monitoring and manipulating brain function: New neuroscience technologies and their ethical implications. The Hastings Center Report 34(3): 35–45.

    Article  Google Scholar 

  63. 63.

    Rose, N. 2007. The politics of life itself: Biomedicine, power, and subjectivity in the twenty-first century. Princeton: Princeton Univ. Press.

    Google Scholar 

  64. 64.

    Bostrom, N., and A. Sandberg. 2009. Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics 15: 311–341.

    Article  Google Scholar 

  65. 65.

    Singh, I. 2002. Bad boys, good mothers, and the “miracle” of Ritalin. Science in Context 15: 577–603.

    Article  Google Scholar 

  66. 66.

    Blum, L.M., and N.F. Stracuzzi. 2004. Gender in the Prozac Nation: Popular discourse and productive femininity. Gender and Society 18(3): 269–286.

    Article  Google Scholar 

  67. 67.

    Kurbjuweit, D., and G. Spörl. 2002. Schöner neuere Mensch. Spiegel Gespräch. Der Spiegel 21(2002): 122–128.

    Google Scholar 

  68. 68.

    Scharper-Rinkel, P. 2004. Die neurowissenschaftliche Gouvernementalität. Re-Konfiguration von Geschlecht zwischen Formbarkeit, Abschaffung und Re-Essentialisierung. In Transformationen von Wissen, Mensch und Geschlecht, ed. I. Dölling, S. Hark, K. Esders, and C. Genschel, 94–208. Königstein: Helmer.

    Google Scholar 

  69. 69.

    Kirsch, I., B.J. Deacon, T.B. Huedo-Medina, A. Scoboria, T.J. Moore, and B.T. Johnson. 2008. Initial severity and antidepressant benefits: A meta-analysis of data submitted to the food and drug administration. PLoS Medicine 5: 260–268.

    Article  Google Scholar 

  70. 70.

    Braeutigam, S. 2005. Neuroeconomics ─ From neural systems to economic behaviour. Brain Research Bulletin 67: 355–360.

    Article  Google Scholar 

  71. 71.

    Schmitz, S. 2011: Entscheidungsraum Gehirn: Neurokultur, Neuroökonomie und das cerebrale Subjekt. In Bioökonomien. Objekte, Praxen, Strukturen, ed. S. Lettow, in press, Bielefeld: transcript.

  72. 72.

    Sanfey, A.G., J.K. Rilling, J.A. Aronson, L.E. Nystrom, and J.D. Cohen. 2003. The neural basis of economic decision-making in the ultimatum game. Science 300: 1755–1758.

    Article  Google Scholar 

  73. 73.

    Illouz, E. 2008. Emotional capital, therapeutic language, and the habitus of “the new man”. In Sexualized brains. Scientific modeling of emotional intelligence form a cultural perspective, ed. N.C. Karafyllis and G. Ulshöfer, 151–178. Cambridge: MIT.

    Google Scholar 

  74. 74.

    Ulshöfer, G. 2008. The economic brain: Neuroeconomics and “post-autistic economics” through the lens of gender. In Sexualized brains. Scientific modeling of emotional intelligence form a cultural perspective, ed. N.C. Karafyllis and G. Ulshöfer, 191–220. Cambridge: MIT.

    Google Scholar 

  75. 75.

    Häusel, H.-G. 2007. Neuromarketing mit Limbic®. Emotions- und Motivwelten im Gehirn des Kunden treffen. Innovation Management 3/2007.

  76. 76.

    Traindl, A. 2007. Neuromarketing am Point of Sale (POS): Mit Neuronen zu Millionen. In Neuromarketing: Erkenntnisse der Hirnforschung für Markenführung, Werbung und Verkauf, ed. H.-G. Häusel, 48–59. Freiburg: Haufe.

    Google Scholar 

  77. 77.

    Haraway, D. 1992. The promise of monsters: A regenerative politics for inapproriate/d others. In Cultural studies, ed. L. Grossberg, C. Nelson, and P.A. Treichler, 295–337. New York: Routledge.

    Google Scholar 

  78. 78.

    Boltanski, L., and E. Chiapello. 2005. The new spirit of capitalism. London: Verso.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sigrid Schmitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmitz, S. The Neurotechnological Cerebral Subject: Persistence of Implicit and Explicit Gender Norms in a Network of Change. Neuroethics 5, 261–274 (2012).

Download citation


  • Neurotechnologies
  • Neuroenhancement
  • Cerebral subject
  • Optimization
  • Gender and ethics