Skip to main content
Log in

Role of volumetric parameters obtained from 68 Ga-PSMA PET/CT and 18F-FDG PET/CT in predicting overall survival in patients with mCRPC receiving taxane therapy

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to determine the prognostic role of volumetric parameters and Pro-PET scores obtained from 68 Ga-prostate-specific membrane antigen (PSMA) PET/CT and 18F-FDG PET/CT in patients with metastatic castration-resistant prostate cancer (mCRPC) receiving taxane therapy.

Materials and methods

The study included 71 patients who underwent simultaneous PSMA and 18F-FDG PET/CT imaging between January 2019 and January 2022, had a Pro-PET score of 3–5 and had received taxane therapy after imaging. 18F-FDG tumor volume (TV-F) and PSMA tumor volume (TV-P) values of the lesions and total lesion glycolysis (TL-G) and total lesion PSMA (TL-P) values of the lesions were calculated on both imaging studies and the effects of these parameters on overall survival (OS) were investigated.

Results

The median age of the patients included herein was 71 years (56–89) and the median prostate-specific antigen (PSA) level was 16.4 (0.01–1852 ng/dL). According to the Kaplan–Meier survival analysis, TTV-P ≥ 78.5, TTL-P ≥ 278.8, TTV-F ≥ 94.98, TTL-G ≥ 458.3, TTV-P + F ≥ 195.45, TTL-G + P ≥ 855.78, lymph node (L)TV-FDG ≥ 3.4, LFDG-SUVmax ≥ 3.2, LFDG-SUVmean ≥ 2.25, LFDG-SUVpeak ≥ 2.55, and bone (B)TV-F ≥ 51.15 values were found to be prognostic factors in predicting short OS. Multivariate Cox regression analysis showed that a Vscore ≥ 3 (95% confidence interval [CI]: 7.069–98.251, p < 0.001) and TTL-G + P ≥ 855.78 (95% CI: 4.878–1037.860, p = 0.006) were found to be independent prognostic factors in predicting short OS.

Conclusion

Volumetric parameters and Pro-PET scores obtained from 68 Ga-PSMA PET/CT and 18F-FDG PET/CT imaging have been shown to have an impact on OS in patients with mCRPC receiving taxane therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The findings and analysis sets of this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Harris WP, Mostaghel EA, Nelson PS, Montgomery B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol. 2009;6:76–85 (Erratum in: Nat Clin Pract Urol. 2009;6:173).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright GL Jr, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1995;1:18–28.

    Article  PubMed  Google Scholar 

  5. Bagguley D, Ong S, Buteau JP, Koschel S, Dhiantravan N, Hofman MS, et al. Role of PSMA PET/CT imaging in the diagnosis, staging and restaging of prostate cancer. Future Oncol. 2021;17:2225–41.

    Article  CAS  PubMed  Google Scholar 

  6. Paschalis A, Sheehan B, Riisnaes R, Rodrigues DN, Gurel B, Bertan C, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM. The metabolic phenotype of prostate cancer. Front Oncol. 2017;7:131.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Xu W, Wang B, Lin G, Wei Y, Abudurexiti M, et al. GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers. Cancer Lett. 2020;485:45–55.

    Article  CAS  PubMed  Google Scholar 

  9. Fox JJ, Gavane SC, Blanc-Autran E, Nehmeh S, Gönen M, Beattie B, et al. Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncol. 2018;4:217–24.

    Article  PubMed  Google Scholar 

  10. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–20.

    Article  CAS  PubMed  Google Scholar 

  11. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, et al. TROPIC investigators. prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376:1147–54.

    Article  PubMed  Google Scholar 

  12. Fitzpatrick JM, de Wit R. Taxane mechanisms of action: potential implications for treatment sequencing in metastatic castration-resistant prostate cancer. Eur Urol. 2014;65:1198–204.

    Article  CAS  PubMed  Google Scholar 

  13. Puente J, Grande E, Medina A, Maroto P, Lainez N, Arranz JA. Docetaxel in prostate cancer: a familiar face as the new standard in a hormone-sensitive setting. Ther Adv Med Oncol. 2017;9:307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, et al. Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469–78.

    Article  PubMed  Google Scholar 

  15. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44:1014–24.

    Article  PubMed  Google Scholar 

  16. Adnan A, Basu S. Concept proposal for a six-tier integrated dual tracer PET-CT (68Ga-PSMA and FDG) image scoring system (“Pro-PET” score) and examining its potential implications in metastatic castration-resistant prostate carcinoma theranostics and prognosis. Nucl Med Commun. 2021;42:566–74.

    Article  CAS  PubMed  Google Scholar 

  17. Montironi R, Cimadamore A, Lopez-Beltran A, Scarpelli M, Aurilio G, Santoni M, et al. Morphologic, molecular and clinical features of aggressive variant prostate cancer. Cells. 2020;9:1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manucha V, Henegan J. Clinicopathologic diagnostic approach to aggressive variant prostate cancer. Arch Pathol Lab Med. 2020;144:18–23.

    Article  CAS  PubMed  Google Scholar 

  19. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19:3621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vlachostergios PJ, Puca L, Beltran H. Emerging variants of castration-resistant prostate cancer. Curr Oncol Rep. 2017;19:32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmuck S, von Klot CA, Henkenberens C, Sohns JM, Christiansen H, Wester HJ, et al. Initial experience with volumetric 68Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J Nucl Med. 2017;58:1962–8.

    Article  CAS  PubMed  Google Scholar 

  22. Grubmüller B, Rasul S, Baltzer P, Fajkovic H, D’Andrea D, Berndl F, et al. Response assessment using [68 Ga]Ga-PSMA ligand PET in patients undergoing systemic therapy for metastatic castration-resistant prostate cancer. Prostate. 2020;80:74–82.

    Article  PubMed  Google Scholar 

  23. Oruç Z, Güzel Y, Ebinç S, Kömek H, Küçüköner M, Kaplan MA, et al. Efficacy of 68Ga-PSMA PET/CT-derived whole-body volumetric parameters in predicting response to second-generation androgen receptor axis-targeted therapy, and the prognosis in metastatic hormone-refractory prostate cancer patients. Nucl Med Commun. 2021;42:1336–46.

    Article  PubMed  Google Scholar 

  24. Can C, Gündoğan C, Yildirim OA, Poyraz K, Güzel Y, Kömek H. Role of 68Ga-PSMA PET/CT parameters in treatment evaluation and survival prediction in prostate cancer patients compared with biochemical response assessment. Hell J Nucl Med. 2021;24:25–35.

    PubMed  Google Scholar 

  25. Telli TA, Ozguven S, Alan O, Filizoglu N, Ozturk MA, Sariyar N, et al. Role of baseline 68Ga-PSMA PET/CT-derived whole-body volumetric parameters in predicting survival outcomes of metastatic castration-resistant prostate cancer patients receiving first-line treatment. Ann Nucl Med. 2022;36:964–75.

    Article  CAS  PubMed  Google Scholar 

  26. Seifert R, Kessel K, Schlack K, Weber M, Herrmann K, Spanke M, et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging. 2021;48:1200–10.

    Article  CAS  PubMed  Google Scholar 

  27. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  28. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallamini A, Zwarthoed C, Borra A. Positron emission tomography (PET) in oncology. Cancers (Basel). 2014;6:1821–89.

    Article  PubMed  Google Scholar 

  30. Jadvar H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013;40:5–10.

    Article  CAS  PubMed Central  Google Scholar 

  31. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112:E4111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012;11:1672–82.

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int J Cancer. 2018;142:2414–24.

    Article  CAS  PubMed  Google Scholar 

  34. Bauckneht M, Bertagna F, Donegani MI, Durmo R, Miceli A, De Biasi V, et al. The prognostic power of 18F-FDG PET/CT extends to estimating systemic treatment response duration in metastatic castration-resistant prostate cancer (mCRPC) patients. Prostate Cancer Prostatic Dis. 2021;24:1198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wibmer AG, Morris MJ, Gonen M, Zheng J, Hricak H, Larson S, et al. Quantification of metastatic prostate cancer whole-body tumor Burden with 18F-FDG PET parameters and associations with overall survival after first-line abiraterone or enzalutamide: a single-center retrospective cohort study. J Nucl Med. 2021;62:1050–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferdinandus J, Violet J, Sandhu S, Hicks RJ, Ravi Kumar AS, Iravani A, et al. Prognostic biomarkers in men with metastatic castration-resistant prostate cancer receiving [177Lu]-PSMA-617. Eur J Nucl Med Mol Imaging. 2020;47:2322–7.

    Article  CAS  PubMed  Google Scholar 

  37. Whitney CA, Howard LE, Posadas EM, Amling CL, Aronson WJ, Cooperberg MR, et al. In men with castration-resistant prostate cancer, visceral metastases predict shorter overall survival: what predicts visceral metastases? Results from the SEARCH database. Eur Urol Focus. 2017;3:480–6.

    Article  PubMed  Google Scholar 

  38. Guijarro A, Hernández V, de la Morena JM, Jiménez-Valladolid I, Pérez-Fernández E, de la Peña E, Llorente C. Influence of the location and number of metastases in the survival of metastatic prostatic cancer patients. Actas Urol Esp. 2017;41:226–33.

    Article  CAS  PubMed  Google Scholar 

  39. Mazzone E, Preisser F, Nazzani S, Tian Z, Bandini M, Gandaglia G, et al. Location of metastases in contemporary prostate cancer patients affects cancer-specific mortality. Clin Genitourin Cancer. 2018;16:376-84.e1.

    Article  PubMed  Google Scholar 

  40. Gandaglia G, Karakiewicz PI, Briganti A, Passoni NM, Schiffmann J, Trudeau V, et al. Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur Urol. 2015;68:325–34.

    Article  PubMed  Google Scholar 

  41. Xu N, Wu YP, Ke ZB, Liang YC, Tao X, Chen SH, et al. Risk factors of developing visceral metastases at diagnosis in prostate cancer patients. Transl Cancer Res. 2019;8:928–38.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jadvar H. Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat Rev Urol. 2009;6:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang B, Liu C, Wei Y, Meng J, Zhang Y, Gan H, et al. A Prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res. 2020;26(17):4551–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kepenek F, Can C, Kömek H, Kaplan İ, Gündoğan C, Ebinç S, et al. Combination of [68Ga] Ga-PSMA PET/CT and [18F] FDG PET/CT in demonstrating dedifferentiation in castration-resistant prostate cancer. Médecine Nucléaire. 2023. https://doi.org/10.1016/j.mednuc.2022.12.001.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Kömek.

Ethics declarations

Conflict of interest

There no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güzel, Y., Kömek, H., Can, C. et al. Role of volumetric parameters obtained from 68 Ga-PSMA PET/CT and 18F-FDG PET/CT in predicting overall survival in patients with mCRPC receiving taxane therapy. Ann Nucl Med 37, 517–527 (2023). https://doi.org/10.1007/s12149-023-01854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-023-01854-9

Keywords

Navigation