Skip to main content
Log in

Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study

Annals of Nuclear Medicine Aims and scope Submit manuscript

Cite this article

Abstract

Objective

Tau positron emission tomography (PET) imaging is a recently developed non-invasive tool that can detect the density and extension of tau neurofibrillary tangles. Tau PET tracers have been validated to harmonize and accelerate their development and implementation in clinical practice. Whereas standard protocols including injected dose, uptake time, and duration have been determined for tau PET tracers, reconstruction parameters have not been standardized. The present study conducted phantom experiments based on tau pathology to standardize quantitative tau PET imaging parameters and optimize reconstruction conditions of PET scanners at four Japanese sites according to the results of phantom experiments.

Methods

The activity of 4.0 and 2.0 kBq/mL for Hoffman 3D brain and cylindrical phantoms, respectively, was estimated from published studies of brain activity using [18F]flortaucipir, [18F]THK5351, and [18F]MK6240. We developed an original tau-specific volume of interest template for the brain based on pathophysiological tau distribution in the brain defined as Braak stages. We acquired brain and cylindrical phantom images using four PET scanners. Iteration numbers were determined as contrast and recover coefficients (RCs) in gray (GM) and white (WM) matter, and the magnitude of the Gaussian filter was determined from image noise.

Results

Contrast and RC converged at ≥ 4 iterations, the error rates of RC for GM and WM were < 15% and 1%, respectively, and noise was < 10% in Gaussian filters of 2–4 mm in images acquired using the four scanners. Optimizing the reconstruction conditions for phantom tau PET images acquired by each scanner improved contrast and image noise.

Conclusions

The phantom activity was comprehensive for first- and second-generation tau PET tracers. The mid-range activity that we determined could be applied to later tau PET tracers. We propose an analytical tau-specific VOI template based on tau pathophysiological changes in patients with AD to standardize tau PET imaging. Phantom images reconstructed under the optimized conditions for tau PET imaging achieved excellent image quality and quantitative accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Payoux P, Delrieu J, Gallini A, Adel D, Salabert AS, Hitzel A, et al. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings. Eur J Nucl Med Mol Imaging. 2015;42(9):1459–68.

    Article  CAS  PubMed  Google Scholar 

  2. As A. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020;16(3):391–460.

    Article  Google Scholar 

  3. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  6. Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016;80(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.

    Article  PubMed  Google Scholar 

  8. Lowe VJ, Wiste HJ, Senjem ML, Weigand SD, Therneau TM, Boeve BF, et al. Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain. 2018;141(1):271–87.

    Article  PubMed  Google Scholar 

  9. Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of Tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139(Pt 5):1539–50.

    Article  PubMed  Google Scholar 

  11. Villemagne VL, Dore V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225–36.

    Article  CAS  PubMed  Google Scholar 

  12. Declercq L, Rombouts F, Koole M, Fierens K, Marien J, Langlois X, et al. Preclinical evaluation of 18F-JNJ64349311, a novel PET tracer for tau imaging. J Nucl Med. 2017;58(6):975–81.

    Article  CAS  PubMed  Google Scholar 

  13. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  14. Lu J, Bao W, Li M, Li L, Zhang Z, Alberts I, et al. Associations of [18F]-APN-1607 tau PET binding in the brain of Alzheimer’s disease patients with cognition and glucose metabolism. Front Neurosci. 2020;14:604.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mueller A, Bullich S, Barret O, Madonia J, Berndt M, Papin C, et al. Tau PET imaging with 18F-PI-2620 in patients with Alzheimer disease and healthy controls: a first-in-humans study. J Nucl Med. 2020;61(6):911–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanabria Bohorquez S, Marik J, Ogasawara A, Tinianow JN, Gill HS, Barret O, et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2019;46(10):2077–89.

    Article  CAS  PubMed  Google Scholar 

  17. Shcherbinin S, Schwarz AJ, Joshi A, Navitsky M, Flitter M, Shankle WR, et al. Kinetics of the tau PET tracer 18F-AV-1451 (T807) in subjects with normal cognitive function, mild cognitive impairment, and Alzheimer disease. J Nucl Med. 2016;57(10):1535–42.

    Article  CAS  PubMed  Google Scholar 

  18. Wong DF, Comley R, Kuwabara H, Rosenberg PB, Resnick SM, Ostrowitzki S, et al. First in-human PET study of 3 novel tau radiopharmaceuticals: [11C]RO6924963, [11C]RO6931643, and [18F]RO6958948. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.118.209916.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wood H. Alzheimer disease: [11C]PBB3–a new PET ligand that identifies tau pathology in the brains of patients with AD. Nat Rev Neurol. 2013;9(11):599.

    Article  PubMed  Google Scholar 

  20. Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019;24(8):1112–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun. 2016;4(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kimura Y, Endo H, Ichise M, Shimada H, Seki C, Ikoma Y, et al. A new method to quantify tau pathologies with 11C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter. EJNMMI Res. 2016;6(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, et al. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther. 2020;12(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ikari Y, Akamatsu G, Nishio T, Ishii K, Ito K, Iwatsubo T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys. 2016;3(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Akamatsu G, Ikari Y, Nishio T, Nishida H, Ohnishi A, Aita K, et al. Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging. Ann Nucl Med. 2016;30(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  28. Wagatsuma K, Miwa K, Kamitaka Y, Koike E, Yamao T, Yoshii T, et al. Determination of optimal regularization factor in Bayesian penalized likelihood reconstruction of brain PET images using [18F]FDG and [11C]PiB. Med Phys. 2022;49(5):2995–3005.

    Article  PubMed  Google Scholar 

  29. Mattay VS, Fotenos AF, Ganley CJ, Marzella L. Brain tau imaging: food and drug administration approval of 18F-Flortaucipir injection. J Nucl Med. 2020;61(10):1411–2.

    Article  PubMed  Google Scholar 

  30. Tian M, Civelek AC, Carrio I, Watanabe Y, Kang KW, Murakami K, et al. International consensus on the use of tau PET imaging agent 18F-flortaucipir in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2022;49(3):895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weber CJ, Carrillo MC, Jagust W, Jack CR Jr, Shaw LM, Trojanowski JQ, et al. The worldwide Alzheimer’s disease neuroimaging initiative: ADNI-3 updates and global perspectives. Alzheimers Dement (N Y). 2021;7(1): e12226.

    PubMed  Google Scholar 

  32. Bischof GN, Dodich A, Boccardi M, van Eimeren T, Festari C, Barthel H, et al. Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging. 2021;48(7):2110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chiotis K, Dodich A, Boccardi M, Festari C, Drzezga A, Hansson O, et al. Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging. 2021;48(7):2086–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, et al. Clinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging. 2021;48(7):2097–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsiao IT, Lin KJ, Huang KL, Huang CC, Chen HS, Wey SP, et al. Biodistribution and Radiation dosimetry for the tau tracer 18F-THK-5351 in healthy human subjects. J Nucl Med. 2017;58(9):1498–503.

    Article  CAS  PubMed  Google Scholar 

  36. Koole M, Lohith TG, Valentine JL, Bennacef I, Declercq R, Reynders T, et al. Preclinical safety evaluation and human dosimetry of [18F]MK-6240, a novel PET tracer for imaging neurofibrillary tangles. Mol Imaging Biol. 2020;22(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  37. Golla SSV, Timmers T, Ossenkoppele R, Groot C, Verfaillie S, Scheltens P, et al. Quantification of tau load using [18F]AV1451 PET. Mol Imaging Biol. 2017;19(6):963–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Li Y, Pirraglia E, Okamura N, Rusinek H, de Leon MJ, et al. Quantitative evaluation of tau PET tracers 18F-THK5351 and 18F-AV-1451 in Alzheimer’s disease with standardized uptake value peak-alignment (SUVP) normalization. Eur J Nucl Med Mol Imaging. 2018;45(9):1596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He M, Baker SL, Shah VD, Lockhart SN, Jagust WJ. Scan-time corrections for 80–100-min standardizetd uptake volume ratios to measure the 18F-AV-1451 tracer for tau imaging. IEEE Trans Med Imaging. 2019;38(3):697–709.

    Article  PubMed  Google Scholar 

  40. Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, et al. Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS ONE. 2016;11(6): e0158460.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lohith TG, Bennacef I, Vandenberghe R, Vandenbulcke M, Salinas CA, Declercq R, et al. Brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer targeting neurofibrillary tangles. J Nucl Med. 2019;60(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  42. Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Scholl M, Strandberg O, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018;320(11):1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ossenkoppele R, Smith R, Mattsson-Carlgren N, Groot C, Leuzy A, Strandberg O, et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 2021;78(8):961–71.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, et al. In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimers Res Ther. 2018;10(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain. 2020;143(9):2818–30.

    Article  PubMed  Google Scholar 

  46. Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the national electrical manufacturers association NU 2–2001 standard. J Nucl Med. 2005;46(12):2083–91.

    CAS  PubMed  Google Scholar 

  47. Rausch I, Cal-Gonzalez J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. Performance evaluation of the biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60(7):1031–6.

    Article  PubMed  Google Scholar 

  49. Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.

    Article  PubMed  Google Scholar 

  50. Fleisher AS, Pontecorvo MJ, Devous MD Sr, Lu M, Arora AK, Truocchio SP, et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 2020;77(7):829–39.

    Article  PubMed  Google Scholar 

  51. Lowe VJ, Lundt ES, Albertson SM, Min HK, Fang P, Przybelski SA, et al. Tau-positron emission tomography correlates with neuropathology findings. Alzheimers Dement. 2020;16(3):561–71.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Leuzy A, Smith R, Cullen NC, Strandberg O, Vogel JW, Binette AP, et al. Biomarker-based prediction of longitudinal tau positron emission tomography in alzheimer disease. JAMA Neurol. 2022;79(2):149–58.

    Article  PubMed  Google Scholar 

  53. Pascoal TA, Benedet AL, Tudorascu DL, Therriault J, Mathotaarachchi S, Savard M, et al. Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages. Brain. 2021;144(11):3517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Leuzy A, Pascoal TA, Strandberg O, Insel P, Smith R, Mattsson-Carlgren N, et al. A multicenter comparison of [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis. Eur J Nucl Med Mol Imaging. 2021;48(7):2295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Teng E, Manser PT, Sanabria Bohorquez S, Wildsmith KR, Pickthorn K, Baker SL, et al. Baseline [18F]GTP1 tau PET imaging is associated with subsequent cognitive decline in Alzheimer’s disease. Alzheimers Res Ther. 2021;13(1):196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205–16.

    Article  PubMed  Google Scholar 

  57. Bun S, Moriguchi S, Tezuka T, Sato Y, Takahata K, Seki M, et al. Findings of 18F-PI-2620 tau PET imaging in patients with Alzheimer’s disease and healthy controls in relation to the plasma P-tau181 levels in a Japanese sample. Neuropsychopharmacol Rep. 2022;42(4):437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ossenkoppele R, Leuzy A, Cho H, Sudre CH, Strandberg O, Smith R, et al. The impact of demographic, clinical, genetic, and imaging variables on tau PET status. Eur J Nucl Med Mol Imaging. 2021;48(7):2245–58.

    Article  CAS  PubMed  Google Scholar 

  59. Dore V, Bohorquez SS, Leuzy A, Shimada H, Bullich S, Bourgeat P, et al. Towards a universal cortical tau sampling mask. Alzheimer’s Dement. 2021. https://doi.org/10.1002/alz.055816.

    Article  Google Scholar 

  60. Dore V, Bullich S, Bohorquez SS, Leuzy A, Shimada H, Rowe C, et al. CenTauRz: A standardized quantification of tau PET scans. Alzheimer’s Dement. 2022. https://doi.org/10.1002/alz.061177.

    Article  Google Scholar 

  61. Verwer EE, Golla SSV, Kaalep A, Lubberink M, van Velden FHP, Bettinardi V, et al. Harmonisation of PET/CT contrast recovery performance for brain studies. Eur J Nucl Med Mol Imaging. 2021;48(9):2856–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoffman EJCP, Guerrero TM, et al. Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of [18F]fluorodeoxyglucose uptake in the human brain. J Cereb Blood Flow Metab. 1991;11:A17-25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by JSPS KAKENHI Grant Number (KW, JP20K16747), the Japanese Government, and an Academic Research Grant from the Japanese Society of Radiological Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Wagatsuma.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagatsuma, K., Miwa, K., Akamatsu, G. et al. Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study. Ann Nucl Med 37, 494–503 (2023). https://doi.org/10.1007/s12149-023-01847-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-023-01847-8

Keywords

Navigation