Skip to main content
Log in

Role of nanoparticles in transarterial radioembolization with glass microspheres

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Transarterial Radioembolization (TARE) with 90Y-loaded glass microspheres is a locoregional treatment option for Hepatocellular Carcinoma (HCC). Post-treatment 90Y bremsstrahlung imaging using Single-Photon Emission Tomography (SPECT) is currently a gold-standard imaging modality for quantifying the delivered dose. However, the nature of bremsstrahlung photons causes difficulty for dose estimation using SPECT imaging. This work aimed to investigate the possibility of using glass microspheres loaded with 90Y and Nanoparticles (NPs) to improve the quantification of delivered doses.

Methods

The Monte Carlo codes were used to simulate the post-TARE 90Y planar imaging. Planar images from bremsstrahlung photons and characteristic X-rays are acquired when 0, 1.2 mol/L, 2.4 mol/L, and 4.8 mol/L of Gold (Au), Hafnium (Hf), and Gadolinium (Gd) NPs are incorporated into the glass microspheres. We evaluated the quality of acquired images by calculating sensitivity and Signal-to-Background Ratio (SBR). Therapeutic effects of NPs were evaluated by calculation of Dose Enhancement Ratio (DER) in tumoral and non-tumoral liver tissues.

Results

The in silico results showed that the sensitivity values of bremsstrahlung and characteristic X-ray planar images increased significantly as the NPs concentration increased in the glass microspheres. The SBR values decreased as the NPs concentration increased for the bremsstrahlung planar images. In contrast, the SBR values increased for the characteristic X-ray planar images when Hf and Gd were incorporated into the glass microspheres. The DER values decreased in the tumoral and non-tumoral liver tissues as the NPs concentration increased. The maximum dose reduction was observed at the NPs concentration of 4.8 mol/L (≈ 7%).

Conclusions

The incorporation of Au, Hf, and Gd NPs into the glass microspheres improved the quality and quantity of post-TARE planar images. Also, treatment efficiency was decreased significantly at NPs concentration > 4.8 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl 1):4–13.

    Article  CAS  PubMed  Google Scholar 

  2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7(1):6.

    Article  PubMed  Google Scholar 

  3. Gordan JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brower ST, Gade TP, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol. 2020;38(36):4317–45.

    Article  CAS  PubMed  Google Scholar 

  4. Li R, Li D, Jia G, Li X, Sun G, Zuo C. Diagnostic performance of theranostic radionuclides used in transarterial radioembolization for liver cancer. Front Oncol. 2021;10:551622.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

    Article  PubMed  Google Scholar 

  6. Hall JE, Hall ME. Guyton and hall textbook of medical physiology e-book. New York: Elsevier Health Sciences; 2020.

    Google Scholar 

  7. Okuda K, Ohnishi K, Kimura K, Matsutani S, Sumida M, Goto N, et al. Incidence of portal vein thrombosis in liver cirrhosis. An angiographic study in 708 patients. Gastroenterology. 1985;89(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  8. Saini A, Wallace A, Alzubaidi S, Knuttinen MG, Naidu S, Sheth R, et al. History and evolution of yttrium-90 radioembolization for hepatocellular carcinoma. J Clin Med. 2019;8(1):55.

    Article  CAS  PubMed Central  Google Scholar 

  9. Eaton BR, Kim HS, Schreibmann E, Schuster DM, Galt JR, Barron B, et al. Quantitative dosimetry for yttrium-90 radionuclide therapy: tumor dose predicts fluorodeoxyglucose positron emission tomography response in hepatic metastatic melanoma. J Vasc Interv Radiol. 2014;25(2):288–95.

    Article  PubMed  Google Scholar 

  10. Mikell JK, Mahvash A, Siman W, Baladandayuthapani V, Mourtada F, Kappadath SC. Selective internal radiation therapy with yttrium-90 glass microspheres: biases and uncertainties in absorbed dose calculations between clinical dosimetry models. Int J Radiat Oncol Biol Phys. 2016;96(4):888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. Medical internal radiation dose committee. J Nucl Med. 1999;40(1):11–36.

    Google Scholar 

  12. Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey EC. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Med Phys. 2012;39(5):2346–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiba H, Takahashi A, Baba S, Himuro K, Yamashita Y, Sasaki M. Analysis of the influence of (111)In on (90)Y-bremsstrahlung SPECT based on Monte Carlo simulation. Ann Nucl Med. 2016;30(10):675–81.

    Article  PubMed  Google Scholar 

  14. Uribe CF, Esquinas PL, Gonzalez M, Celler A. Characteristics of Bremsstrahlung emissions of (177)Lu, (188)Re, and (90)Y for SPECT/CT quantification in radionuclide therapy. Phys Med. 2016;32(5):691–700.

    Article  PubMed  Google Scholar 

  15. Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials (Basel). 2020;10(9):1700.

    Article  CAS  PubMed Central  Google Scholar 

  16. Sajo E, Zygmanski P. Nanoparticle enhanced radiation therapy; principles, methods and applications. Bristol: IOP Publishing; 2020. https://doi.org/10.1088/978-0-7503-2396-3.

    Book  Google Scholar 

  17. Pratt EC, Shaffer TM, Zhang Q, Drain CM, Grimm J. Nanoparticles as multimodal photon transducers of ionizing radiation. Nat Nanotechnol. 2018;13(5):418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Philips Healthcare. Patients first performance: Philips BrightView SPECT specification. Gurgaon: Philips Healthcare; 2013.

    Google Scholar 

  20. Chauvie S, Guatelli S, Ivanchenko V, Longo F, Mantero A, Mascialino B, et al. Geant4 low energy electromagnetic physics. IEEE Symp Conf Record Nucl Sci. 2004;2004:16–22.

    Google Scholar 

  21. Ryu H, Meikle SR, Willowson KP, Eslick EM, Bailey DL. Performance evaluation of quantitative SPECT/CT using NEMA NU 2 PET methodology. Phys Med Biol. 2019;64(14):145017.

    Article  CAS  PubMed  Google Scholar 

  22. Sangro B, Iñarrairaegui M, Bilbao JI. Radioembolization for hepatocellular carcinoma. J Hepatol. 2012;56(2):464–73.

    Article  PubMed  Google Scholar 

  23. Deslattes RD, Kessler EG, Indelicato P, de Billy L, Lindroth E, Anton J. X-ray transition energies: new approach to a comprehensive evaluation. Rev Mod Phys. 2003;75(1):35–99.

    Article  CAS  Google Scholar 

  24. Seltzer SM. Cross sections for bremsstrahlung production and electron-impact ionization. In: Jenkins TM, Nelson WR, Rindi A, editors. Monte Carlo transport of electrons and photons. Boston: Springer; 1988. p. 81–114.

    Chapter  Google Scholar 

  25. Wong FC. MIRD: radionuclide data and decay schemes. J Nucl Med. 2009;50(12):2091.

    Article  Google Scholar 

  26. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect. 2003;506(3):250–303.

    Article  CAS  Google Scholar 

  27. Segars WP, Tsui BMW, Jing C, Fang-Fang Y, Fung GSK, Samei E. Application of the 4-D XCAT phantoms in biomedical imaging and beyond. IEEE Trans Med Imaging. 2018;37(3):680–92.

    Article  PubMed  Google Scholar 

  28. Siman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative (90)Y bremsstrahlung SPECT/CT. Med Phys. 2016;43(9):5093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haliloğlu R, Karadeniz Ö, Durak H. A study on the extrinsic sensitivity and counting efficiency of a gamma camera for a cylindrical source and a rectangular detector. Appl Radiat Isot. 2017;130:218–23.

    Article  PubMed  Google Scholar 

  30. Rabus H, Li WB, Villagrasa C, Schuemann J, Hepperle PA, de la Fuente RL, et al. Intercomparison of Monte Carlo calculated dose enhancement ratios for gold nanoparticles irradiated by X-rays: assessing the uncertainty and correct methodology for extended beams. Phys Med. 2021;84:241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huey OS, See YJ, Nabila S, Ping HS, Suzanah I. Collimator and energy window optimization for practical imaging protocol and quantification of Yttrium-90 bremsstrahlung spect/ct: a phantom study. Radiat Phys Chem. 2021;178:109080.

    Article  CAS  Google Scholar 

  32. Kim M, Bae JK, Hong BH, Kim KM, Lee W. Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation. Nucl Eng Technol. 2019;51(2):539–45.

    Article  CAS  Google Scholar 

  33. İnce C, Karadeniz Ö, Ertay T, Durak H. Collimator and energy window optimization for YTTRIUM-90 bremsstrahlung SPECT imaging. Appl Radiat Isot. 2021;167:109453.

    Article  PubMed  Google Scholar 

  34. Villalobos A, Soliman MM, Majdalany BS, Schuster DM, Galt J, Bercu ZL, et al. Yttrium-90 radioembolization dosimetry: what trainees need to know. Semin Intervent Radiol. 2020;37(5):543–54.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Walrand S, Hesse M, Wojcik R, Lhommel R, Jamar F. Optimal design of anger camera for bremsstrahlung imaging: monte carlo evaluation. Front Oncol. 2014;4:149.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hamilton DI. Diagnostic nuclear medicine: a physics perspective. Berlin: Springer Science & Business Media; 2004.

    Book  Google Scholar 

  37. Roshan HR, Mahmoudian B, Gharepapagh E, Azarm A, Pirayesh IJ. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: a SIMIND Monte Carlo study. Appl Radiat Isot. 2016;108:124–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(Suppl 1):S41-55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Rajabi.

Ethics declarations

Conflict of interest

The authors declared no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, A.S., Rajabi, H. & Watabe, H. Role of nanoparticles in transarterial radioembolization with glass microspheres. Ann Nucl Med 36, 479–487 (2022). https://doi.org/10.1007/s12149-022-01727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-022-01727-7

Keywords

Navigation