Skip to main content

Advertisement

Log in

Prediction of cardiac events following concurrent chemoradiation therapy for non-small-cell lung cancer using FDG PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

No imaging biomarkers are available for the prediction of cardiac events following concurrent chemoradiation therapy (CCRT) for non-small-cell lung cancer (NSCLC). We evaluated whether F-18 fluorodeoxyglucose positron emission tomography (FDG PET) early after CCRT, in addition to cardiac dosimetry, could predict late cardiac events in NSCLC.

Methods

We retrospectively enrolled 133 consecutive patients with locally advanced, unresectable stage III NSCLC, who underwent FDG PET early after CCRT and survived at least 6 months. The primary endpoint was cardiac event ≥ grade 2 according to the Common Terminology Criteria for Adverse Events (version 5.0). Myocardial FDG uptake was measured and its association with the risk of cardiac events was evaluated.

Results

FDG PET was performed after a median interval of 11 days of completing CCRT. Overall, 42 (32%) patients experienced cardiac events during a median follow-up of 45 months. The mean heart dose, maximum left ventricular (LV) standardized uptake value (SUV), changes in maximum and mean LV SUV, right ventricular uptake, tumor stage, white blood cell count, and diabetes were associated with cardiac events in univariable analysis. In multivariable analysis, maximum LV SUV (cutoff > 12.84; hazard ratio [95% confidence interval] = 2.140 [1.140–4.016]; p = 0.018) was an independent predictor of cardiac events along with the mean heart dose (> 11.1 Gy; 3.646 [1.792–7.417]; p < 0.001) and tumor stage (IIIB; 1.986 [1.056–3.734]; p = 0.033). It remained predictive of cardiac events in those with higher mean heart dose but not in those with lower mean heart dose.

Conclusions

Early FDG PET after CCRT for NSCLC could aid in predicting late cardiac events, especially in patients with higher mean heart dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Banfill K, Giuliani M, Aznar M, Franks K, McWilliam A, Schmitt M, et al. Cardiac toxicity of thoracic radiotherapy: existing evidence and future directions. J Thorac Oncol. 2021;16:216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.

    Article  CAS  PubMed  Google Scholar 

  4. Walker V, Lairez O, Fondard O, Pathak A, Pinel B, Chevelle C, et al. Early detection of subclinical left ventricular dysfunction after breast cancer radiation therapy using speckle-tracking echocardiography: association between cardiac exposure and longitudinal strain reduction (BACCARAT study). Radiat Oncol. 2019;14:204.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Walker V, Lairez O, Fondard O, Jimenez G, Camilleri J, Panh L, et al. Myocardial deformation after radiotherapy: a layer-specific and territorial longitudinal strain analysis in a cohort of left-sided breast cancer patients (BACCARAT study). Radiat Oncol. 2020;15:201.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yan R, Song J, Wu Z, Guo M, Liu J, Li J, et al. Detection of myocardial metabolic abnormalities by 18F-FDG PET/CT and corresponding pathological changes in beagles with local heart irradiation. Korean J Radiol. 2015;16:919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jingu K, Kaneta T, Nemoto K, Ichinose A, Oikawa M, Takai Y, et al. The utility of 18F-fluorodeoxyglucose positron emission tomography for early diagnosis of radiation-induced myocardial damage. Int J Radiat Oncol Biol Phys. 2006;66:845–51.

    Article  PubMed  Google Scholar 

  8. Evans JD, Gomez DR, Chang JY, Gladish GW, Erasmus JJ, Rebueno N, et al. Cardiac 18F-fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiother Oncol. 2013;109:82–8.

    Article  PubMed  Google Scholar 

  9. Jo IY, Lee JW, Kim WC, Min CK, Kim ES, Yeo SG, et al. Relationship between changes in myocardial F-18 fluorodeoxyglucose uptake and radiation dose after adjuvant three-dimensional conformal radiotherapy in patients with breast cancer. J Clin Med. 2020;9:666. https://doi.org/10.3390/jcm9030666

    Article  CAS  PubMed Central  Google Scholar 

  10. Vinogradskiy Y, Diot Q, Jones B, Castillo R, Castillo E, Kwak J, et al. Evaluating positron emission tomography-based functional imaging changes in the heart after chemo-radiation for patients with lung cancer. Int J Radiat Oncol Biol Phys. 2020;106:1063–70.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  12. Yoo SW, Kim J, Chong A, Kwon SY, Min JJ, Song HC, et al. Metabolic tumor volume measured by F-18 FDG PET/CT can further stratify the prognosis of patients with stage IV non-small cell lung cancer. Nucl Med Mol Imaging. 2012;46:286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gore EM, Hu C, Bar AdV, Robinson CG, Wheatley MD, Bogart JA, et al. Impact of incidental cardiac radiation on cardiopulmonary toxicity and survival for locally advanced non-small cell lung cancer: reanalysis of NRG Oncology/RTOG 0617 with centrally contoured cardiac structures. Int J Radiat Oncol Biol Phys. 2016;96:S129–30.

    Article  Google Scholar 

  14. Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, et al. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2020;27:2154–63.

    Article  PubMed  Google Scholar 

  15. U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf. Accessed 30 Nov 2021.

  16. Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol. 2017;35:1395–402.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, et al. Oxidative stress in radiation-induced cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Atkins KM, Rawal B, Chaunzwa TL, Lamba N, Bitterman DS, Williams CL, et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73:2976–87.

    Article  PubMed  Google Scholar 

  19. Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35:1387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. National Comprehensive Cancer Network (NCCN). NCCN Guidelines: Non-small cell lung cancer (version 3.2020). https://www2.tri-kobe.org/nccn/guideline/lung/english/non_small.pdf. Accessed 30 Nov 2021.

  21. Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, et al. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019;15:2128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Konski A, Li T, Christensen M, Cheng JD, Yu JQ, Crawford K, et al. Symptomatic cardiac toxicity is predicted by dosimetric and patient factors rather than changes in 18F-FDG PET determination of myocardial activity after chemoradiotherapy for esophageal cancer. Radiother Oncol. 2012;104:72–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma CX, Zhao XK, Li YD. New therapeutic insights into radiation-induced myocardial fibrosis. Ther Adv Chronic Dis. 2019;10:2040622319868383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vogiatzidis K, Zarogiannis SG, Aidonidis I, Solenov EI, Molyvdas PA, Gourgoulianis KI, et al. Physiology of pericardial fluid production and drainage. Front Physiol. 2015;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, Gandolfo P, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body F-18-FDG PET/CT. J Nucl Med. 2007;48:1662–9.

    Article  PubMed  Google Scholar 

  26. Jeong J, Kong E, Chun K, Cho I. The impact of energy substrates, hormone level and subject-related factors on physiologic myocardial 18F-FDG uptake in normal humans. Nucl Med Mol Imaging. 2013;47:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang JY, Lee MY, Kim YH. Associations of physiologic myocardial 18F-FDG uptake with fasting duration, HbA1c, and regular exercise. Ann Nucl Med. 2021;35:195–202.

    Article  CAS  PubMed  Google Scholar 

  28. Saygin D, Highland KB, Farha S, Park M, Sharp J, Roach EC, et al. Metabolic and functional evaluation of the heart and lungs in pulmonary hypertension by gated 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography. Pulm Circ. 2017;7:428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cuellar SLB, Palacio D, Benveniste MF, Carter BW, Gladish G. Pitfalls and misinterpretations of cardiac findings on PET/CT imaging: a careful look at the heart in oncology patients. Curr Probl Diagn Radiol. 2019;48:172–83.

    Article  Google Scholar 

  30. Ganatra S, Chatur S, Nohria A. How to diagnose and manage radiation cardiotoxicity. J Am CardioOnc. 2020;2:655–60.

    Google Scholar 

  31. Celutkiene J, Pudil R, Lopez-Fernandez T, Grapsa J, Nihoyannopoulos P, Bergler-Klein J, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22:1504–24.

    Article  CAS  PubMed  Google Scholar 

  32. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.

    Article  PubMed  Google Scholar 

  33. Lee CH, Zhang JF, Yuan KS, Wu ATH, Wu SY. Risk of cardiotoxicity induced by adjuvant anthracycline-based chemotherapy and radiotherapy in young and old Asian women with breast cancer. Strahlenther Onkol. 2019;195:629–39.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by a research fund from the National Research Foundation funded by the Ministry of Education, the Republic of Korea (NRF2016R1D1A3B01006631, PI: Hee-Seung Bom).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Ja Ahn or Hee-Seung Bom.

Ethics declarations

Conflict of interest

Sang-Geon Cho, Yong-Hyub Kim, Hyukjin Park, Ki Seong Park, Jahae Kim, and Sung-Ja Ahn declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 820 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SG., Kim, YH., Park, H. et al. Prediction of cardiac events following concurrent chemoradiation therapy for non-small-cell lung cancer using FDG PET. Ann Nucl Med 36, 439–449 (2022). https://doi.org/10.1007/s12149-022-01724-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-022-01724-w

Keywords

Navigation