Skip to main content

Advertisement

Log in

The application of artificial intelligence in nuclear cardiology

  • Invited Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A decade of unprecedented progress in artificial intelligence (AI) has demonstrated a lot of interest in medical imaging research including nuclear cardiology. AI has a potential to reduce cost, save time and improve image acquisition, interpretation, and decision-making. This review summarizes recent researches and potential applications of AI in nuclear cardiology and discusses the pitfall of AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu Y, Kavanagh P, Fish M, Gerlach J, Ramesh A, Lemley M, et al. Automated quality control for segmentation of myocardial perfusion SPECT. J Nucl Med. 2009;50:1418–26.

  2. Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med. 2017;58:961–7.

  3. Miller RJH, Hu L-H, Gransar H, Betancur J, Eisenberg E, Otaki Y, et al. Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. Eur Heart J Cardiovasc Imaging. 2020;21:567–75.

    Article  CAS  Google Scholar 

  4. Wang T, Lei Y, Tang H, He Z, Castillo R, Wang C, et al. A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study. J Nucl Cardiol. 2020;27:976–87.

    Article  Google Scholar 

  5. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14:521–8.

    Article  Google Scholar 

  6. Bateman TM, Maddahi J, Gray RJ, Murphy FL, Garcia EV, Conklin CM, et al. Diffuse slow washout of myocardial thallium-201: a new scintigraphic indicator of extensive coronary artery disease. J Am Coll Cardiol. 1984;4:55–64.

    Article  CAS  Google Scholar 

  7. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11:171–85.

    Article  Google Scholar 

  8. Kang X, Berman DS, Lewin HC, Cohen I, Friedman JD, Germano G, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography in patients with diabetes mellitus. Am Heart J. 1999;138:1025–32.

    Article  CAS  Google Scholar 

  9. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93:905–14.

    Article  CAS  Google Scholar 

  10. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42:831–7.

    CAS  PubMed  Google Scholar 

  11. Otaki Y, Fish MB, Miller RJH, Lemley M, Slomka PJ. Prognostic value of early left ventricular ejection fraction reserve during regadenoson stress solid-state SPECT-MPI. J Nucl Cardiol. 2021. https://doi.org/10.1007/s12350-020-02420-w. Online ahead of print.

  12. Abidov A, Bax JJ, Hayes SW, Cohen I, Nishina H, Yoda S, et al. Integration of automatically measured transient ischemic dilation ratio into interpretation of adenosine stress myocardial perfusion SPECT for detection of severe and extensive CAD. J Nucl Med. 2004;45:1999–2007.

    CAS  PubMed  Google Scholar 

  13. Slomka PJ, Betancur J, Liang JX, Otaki Y, Hu L-H, Sharir T, et al. Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). J Nucl Cardiol. 2020;27:1010–21.

    Article  Google Scholar 

  14. Eisenberg E, Miller RJH, Hu L-H, Rios R, Betancur J, Azadani P, et al. Diagnostic safety of a machine learning-based automatic patient selection algorithm for stress-only myocardial perfusion SPECT. J Nucl Cardiol. 2021. https://doi.org/10.1007/s12350-021-02698-4. Online ahead of print.

  15. Hu L-H, Miller RJH, Sharir T, Commandeur F, Rios R, Einstein AJ, et al. Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. Eur Heart J Cardiovasc Imaging. 2021;22:705–14.

    Article  Google Scholar 

  16. Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22:877–84.

    Article  Google Scholar 

  17. Hu L-H, Betancur J, Sharir T, Einstein AJ, Bokhari S, Fish MB, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging. 2020;21:549–59.

    Article  Google Scholar 

  18. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38:500–7.

    PubMed  Google Scholar 

  19. Hong MKH, Yao HHI, Pedersen JS, Peters JS, Costello AJ, Murphy DG, et al. Error rates in a clinical data repository: lessons from the transition to electronic data transfer—a descriptive study. BMJ Open. 2013;3:e002406.

    Article  Google Scholar 

  20. Nahm M, Pieper C, Cunningham M. Quantifying data quality for clinical trials using electronic data capture. PLoS ONE. 2008;3:e3049.

    Article  Google Scholar 

  21. Rios R, Miller RJH, Hu L-H, Otaki Y, Singh A, Diniz M, et al. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res. 2021. https://doi.org/10.1093/cvr/cvab236. Online ahead of print.

  22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  Google Scholar 

  23. Esteva A, Kuprel; B, Novoa R. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

  24. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.

    Article  Google Scholar 

  25. Greenspan H, Ginneken B, Summers R. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Medical Imaging. 2016.

  26. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.

    Article  CAS  Google Scholar 

  27. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

  28. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69:2657–64.

    Article  Google Scholar 

  29. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Reply: deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol. 2017;69:2101–2.

  30. Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study. JACC: Cardiovascular Imaging. 2018;11:1654–63.

  31. Betancur J, Hu L-H, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a Multicenter Study. J Nucl Med. 2019;60:664–70.

    Article  Google Scholar 

  32. Otaki Y, Singh A, Kavanagh P, Miller RJH, Parekh T, Tamarappoo BK, et al. Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease. JACC: Cardiovasc Imaging. 2021. https://doi.org/10.1016/j.jcmg.2021.04.030. Online ahead of print.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuka Otaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otaki, Y., Miller, R.J.H. & Slomka, P.J. The application of artificial intelligence in nuclear cardiology. Ann Nucl Med 36, 111–122 (2022). https://doi.org/10.1007/s12149-021-01708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01708-2

Keywords

Navigation