Skip to main content

Advertisement

Log in

Whole-body vibration exercise and training increase regional CBF in mild cognitive impairment with enhanced cognitive function

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

Preclinical and non-medicinal interventions are essential for preventing and treating cognitive decline in patients with mild cognitive impairment (MCI). Whole-body vibration (WBV) exercise is conducted on a platform that generates vertical sinusoidal vibrations, and WBV training may improve regional cerebral blood flow (rCBF) and cognitive function, however, the underlying mechanism remains unclear. The aim of the present study was to investigate whether WBV exercise and a 24-week WBV training protocol increased rCBF and enhanced cognitive function in patients with amnestic MCI (aMCI).

Methods

[99mTc]-ECD and SPECT studies were performed on 16 aMCI patients at baseline, during WBV exercise, and on 6 of the 16 patients after 24-week WBV training. To diagnose SPECT images and select the patients, a Z-score mapping approach was used, which revealed pathological hypoperfusion in the parietal association cortex, precuneus and/or posterior cingulate gyrus for MCI at baseline. rCBF was semi-quantitatively measured and underestimation in the high flow range was corrected. Since it is difficult to quantitatively measure rCBF during WBV exercise, the rCBFratio was obtained by standardizing with the average of individual mean SPECT counts with correcting underestimation in the high flow range. The rCBFratios at baseline and after WBV training were also obtained in a similar manner. Since the changes in rCBF were regarded as corresponding to the changes in rCBFratio, the ratios were compared. Cognitive function was also evaluated and compared.

Results

We found that the rCBFratio changed with an average range of 11.5% during WBV exercise, and similar changes were observed after 24-week WBV training with a 13.0% change, resulting in improved cognitive function (MoCA-J, P = 0.028). The rCBFratio increased in the parietal association cortex and occipital lobes, including the precuneus and posterior cingulate gyrus, at which hypoperfusion was detected at baseline, but decreased in the frontal lobe and anterior cingulate gyrus. The rCBFratio increased on the right side of several motion-suppressive nuclei by WBV exercise; the bilateral red nuclei and right medial globus pallidus by WBV training.

Conclusion

WBV exercise and training increase rCBF in aMCI patients, and WBV training enhances cognitive function and may increase the cognitive reserve. Further investigation is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

aMCI:

Amnestic mild cognitive impairment

BA:

Brodmann area

BA1:

Posterior central gyrus

BA7:

Superior parietal lobule and precuneus

BA10:

Frontal pole

BA11:

Orbitofrontal area

BA17:

Primary visual cortex

BA18:

Visual association cortex

BA19:

Occipital association cortex

BA20:

Inferior temporal cortex

BA21:

Middle temporal cortex

BA25:

Subgenual cortex

BA27:

Piriform cortex

BA28:

Posterior entorhinal cortex

BA29, 30:

Retrosplenial cortex

BA33:

Medial anterior cingulate cortex

BA35:

Perirhinal cortex

BA36:

Parahippocampal gyrus

BA38:

Temporal pole

BA39:

Angular gyrus

BA40:

Supramarginal gyrus

BA41:

Transverse temporal gyrus

BA44:

Inferior frontal cortex opercular part

BA45:

Inferior frontal cortex triangular part

BA46:

Dorsolateral prefrontal cortex

BA47:

Inferior frontal gyrus orbital part

ECD:

[99MTc] ethylene cysteinate dimer

GABA:

Gamma-aminobutylic acid

MCI:

Mild cognitive impairment

MMSE:

Mini-Mental State Examination

MoCA-J:

Montreal Cognitive Assessment Japanese version, MRI: Magnetic resonance imaging

rCBF:

Regional cerebral blood flow

rCBFratio :

Regional cerebral blood flow ratio

ROI:

Region of interest

SD:

Standard deviation

SPECT:

Single photon emission computed tomography

WBV:

Whole-body vibration

WBVex :

Whole-body vibration exercise

WBVtraining :

Whole-body vibration training

References

  1. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–55.

    Article  Google Scholar 

  2. Torosyan N, Silverman DHS. Neuronuclear imaging in the evaluation of dementia and mild decline in cognition. Semin Nucl Med. 2012;42(6):415–22. https://doi.org/10.1053/j.semnuclmed.2012.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shimada H, Makizako H, Doi T, Lee SC, Lee S. Conversion and reversion rates in japanese older people with mild cognitive impairment. J Am Med Dir Assoc. 2017;18(9):808.e1-808.e6. https://doi.org/10.1016/j.jamda.

    Article  Google Scholar 

  4. Huang M, Liao LR, Pang MY. Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review. Clin Rehabil. 2017;31(1):23–33. https://doi.org/10.1177/0269215515621117.

    Article  PubMed  Google Scholar 

  5. Chapman SB, Aslan S, Spence JS, Defina LF, Keebler MW, Didehbani N, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5:75–83. https://doi.org/10.3389/fnagi.2013.00075.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thomas BP, Yezhuvath US, Tseng BY, Liu P, Levine BD, Zhang R, et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. J Magn Reson Imaging JMRI. 2013;38(5):1177–83. https://doi.org/10.1002/jmri.24090.

    Article  PubMed  Google Scholar 

  7. Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ. Aerobic exercise training improves cerebral blood flow and executive function: a randomized, controlled cross-over trial in sedentary older men. Front Aging Neurosci. 2019;11:333–43. https://doi.org/10.3389/fnagi.2019.00333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, et al. BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: associations with working memory function. J Alzheimers Dis. 2017;55(2):645–57. https://doi.org/10.3233/JAD-160593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. J Alzheimers Dis. 2017;55(1):1–18. https://doi.org/10.3233/JAD-160665.

    Article  PubMed  Google Scholar 

  10. Bogaerts A, Verschueren S, Delecluse C, Claessens AL, Boonen S. Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial. Gait Posture. 2007;26(2):309–16. https://doi.org/10.1016/j.gaitpost.2006.09.078.

    Article  PubMed  Google Scholar 

  11. Zhang L, Weng C, Liu M, Wang Q, Liu L, He Y. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial. Clin Rehabil. 2014;28(1):59–68. https://doi.org/10.1177/0269215513492162.

    Article  CAS  PubMed  Google Scholar 

  12. Sitjà-Rabert M, Martínez-Zapata MJ, Fort Vanmeerhaeghe A, Rey Abella F, Romero-Rodríguez D, Bonfill X. Effects of a whole body vibration (WBV) exercise intervention for institutionalized older people: a randomized, multicentre, parallel, clinical trial. J Am Med Dir Assoc. 2015;16(2):125–31. https://doi.org/10.1016/j.jamda.2014.07.018.

    Article  PubMed  Google Scholar 

  13. Sá-Caputo D, Paineiras-Domingos L, Carvalho-Lima R, Dias-Costa G, de Paiva PC, de Azeredo CF, et al. Potential effects of whole-body vibration exercises on blood flow kinetics of different populations: a systematic review with a suitable approach. Afr J Tradit Complement Altern Med. 2017;7:14(4 Suppl):41–51. doi: https://doi.org/10.21010/ajtcam.v14i4S.6.

  14. Rasti E, Rojhani-Shirazi Z, Ebrahimi N, Sobhan MR. Effects of whole body vibration with exercise therapy versus exercise therapy alone on flexibility, vertical jump height, agility and pain in athletes with patellofemoral pain: a randomized clinical trial. BMC Musculoskelet Disord. 2020;21(1):705–13. https://doi.org/10.1186/s12891-020-03732-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang F, Butler AJ. Efficacy of controlled whole-body vibration training on improving fall risk factors in stroke survivors: a meta-analysis Neurorehabil Neural Repair. 2020;34(4):275-288. doi: https://doi.org/10.1177/1545968320907073

  16. Saquetto M, Carvalho V, Silva C, Conceição C, Gomes-Neto M. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015;15(2):137–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alashram AR, Padua E, Annino G. Effects of whole-body vibration on motor impairments in patients with neurological disorders: a systematic review. Am J Phys Med Rehabil. 2019;98(12):1084–98. https://doi.org/10.1097/PHM.0000000000001252.

    Article  PubMed  Google Scholar 

  18. Lau RW, Yip SP, Pang MY. Whole-body vibration has no effect on neuromotor function and falls in chronic stroke. Med Sci Sports Exerc. 2012;44(8):1409–18. https://doi.org/10.1249/MSS.0b013e31824e4f8c.

    Article  PubMed  Google Scholar 

  19. Yang X, Wang P, Liu C, He C, Reinhardt JD. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: a systematic review and meta-analysis. Clin Rehabil. 2015;29(7):627–38. https://doi.org/10.1177/0269215514552829.

    Article  PubMed  Google Scholar 

  20. Lam FM, Chan PF, Liao LR, Woo J, Hui E, Lai CW, Kwok TC, Pang MY. Effects of whole-body vibration on balance and mobility in institutionalized older adults: a randomized controlled trial. Clin Rehabil. 2018;32(4):462–72. https://doi.org/10.1177/0269215517733525.

    Article  PubMed  Google Scholar 

  21. Alfini AJ, Weiss LR, Nielson KA, Verber MD, Smith JC. Resting cerebral blood flow after exercise training in mild cognitive impairment. J Alzheimers Dis. 2019;67(2):671–84. https://doi.org/10.3233/JAD-180728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging. 2006;27(1):24–31. https://doi.org/10.1016/j.neurobiolaging.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2007;28(4):731–6. PMID: 17416830 Free PMC article.

  24. Ishii K, Kanda T, Uemura T, Miyamoto N, Yoshikawa T, Shimada K, et al. Computer-assisted diagnostic system for neurodegenerative dementia using brain SPECT and 3D-SSP. Eur J Nucl Med Mol Imaging. 2009;36(5):831–40. https://doi.org/10.1007/s00259-008-1051-3.

    Article  CAS  PubMed  Google Scholar 

  25. Ito K, Mori E, Fukuyama H, Ishii K, Washimi Y, Asada T, et al. Prediction of outcomes in MCI with 123I-IMP-CBF SPECT: a multicenter prospective cohort study. Ann Nucl Med. 2013;27(10):898–906. https://doi.org/10.1007/s12149-013-0768-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48 (PMID: 7790950).

    CAS  PubMed  Google Scholar 

  27. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–2127. doi: https://doi.org/10.1001/jama.286.17.2120.

  28. Friberg L, Andersen AR, Lassen NA, Holm S, Dam M. Retention of 99mTc-bicisate in the human brain after intracarotid injection. J Cereb Blood Flow Metab. 1994;14(Suppl 1):S19-27 (PMID: 8263067).

    CAS  PubMed  Google Scholar 

  29. Fujiwara Y, Suzuki H, Yasunaga M, Sugiyama M, Ijuin M, Sakuma N, et al. Brief screening tool for mild cognitive impairment in older Japanese: validation of the japanese version of the montreal cognitive assessment. Geriatr Gerontol Int. 2010;10(3):225–32. https://doi.org/10.1111/j.1447-0594.2010.00585.x.

    Article  PubMed  Google Scholar 

  30. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8. https://doi.org/10.1001/archneur.56.3.303.

    Article  CAS  PubMed  Google Scholar 

  31. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6. https://doi.org/10.1111/j.1365-2796.2004.01380.x.

    Article  CAS  PubMed  Google Scholar 

  32. Matsuda H, Yagishita A, Tsuji S, Hisada K. A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med. 1995;22(7):633–7. https://doi.org/10.1007/BF01254564.

    Article  CAS  PubMed  Google Scholar 

  33. Odano I. A novel method of statistical image processing for cerebral blood flow and glucose metabolism that reduces the effects of brain atrophy and ventricular enlargement. Michinoku Kakuigaku-no-Kai. 2016;23(1):3–6.

    Google Scholar 

  34. Friston KJ. Statistical parametric mapping. In: Thatcher RW, Hallett M, Zeffiro T, John ER, Huerta M, editors. Functional neuroimaging. San Diego: Academic Press; 1994. p. 79–93.

    Google Scholar 

  35. Mizumura S, Kumita S, Cho K, Ishihara M, Nakajo H, Toba M, et al. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation. Ann Nucl Med. 2003;17(4):289–95.

    Article  Google Scholar 

  36. Lancaster JL, Woldorff MG, Parsons LK, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31. https://doi.org/10.1002/1097-0193(200007)10:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kerschan-Schindl K, Grampp S, Henk C, Resch H, Preisinger E, Fialka-Moser V, et al. Whole-body vibration exercise leads to alterations in muscle blood volume. Clin Physiol. 2001;21(3):377–82. https://doi.org/10.1046/j.1365-2281.2001.00335.x.

    Article  CAS  PubMed  Google Scholar 

  38. Lythgo N, Eser P, de Groot P, Galea M. Whole-body vibration dosage alters leg blood flow Clin Physiol Funct Imaging. 2009;29(1):53-59. doi: https://doi.org/10.1111/j.1475-097X.2008.00834.x

  39. Lemon RN, W. Landau, Tutssel DL, Lawrence DG. Lawrence and Kuypers (1968a, b) revisited: copies of the original filmed material from their classic papers in Brain. Brain. 2012;135(Pt 7):2290–2295, https://doi.org/10.1093/brain/aws037

  40. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17. https://doi.org/10.14802/jmd.16062.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim KH, Lee HB. The effects of whole body vibration exercise intervention on electroencephalogram activation and cognitive function in women with senile dementia. J Exerc Rehabil. 2018;14(4):586–91. https://doi.org/10.12965/jer.1836230.115.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang P, Fang R, Li BY, Chen SD. Exercise-Related Changes of Networks in Aging and Mild Cognitive Impairment Brain. Front Aging Neurosci. 2016;8:47. https://doi.org/10.3389/fnagi.2016.00047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Odano.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose, and received no funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odano, I., Maeyatsu, F., Asari, M. et al. Whole-body vibration exercise and training increase regional CBF in mild cognitive impairment with enhanced cognitive function. Ann Nucl Med 36, 82–94 (2022). https://doi.org/10.1007/s12149-021-01687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01687-4

Keywords

Navigation