Skip to main content

Advertisement

Log in

Evaluating and comparing the image quality and quantification accuracy of SiPM-PET/CT and PMT-PET/CT

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the image quality and the quantification accuracy of Biograph Vision PET/CT scanner as a SiPM-PET in comparison to the conventional PMT-PET, Biograph mCT PET/CT scanner.

Methods

This study consisted of a phantom study and a retrospective clinical analysis where patients underwent 18F-FDG PET/CT in both PET systems. The body phantom of the NEMA IEC with 10–37 mm diameter spheres were filled with an 18F-FDG solution. The root mean square error (RMSE) of SUV, the detectability of 10-mm sphere, NECphantom, the background variability (N10mm) and the contrast-noise-ratio (QH,10 mm/N10mm) were calculated based on the phantom analysis. We also examined the quality of the acquired clinical images using the NECpatient, NECdensity, SNRliver, SUVliver and SUVlesion.

Results

In the phantom study on Vision scanner, RMSE was relatively lower when the iteration number was 2, 3 or 4. To satisfy a visual score of 1.5 and the reference range of QH,10 mm/N10mm, a 60-s or longer acquisition was required. Our clinical findings show that NECpatient averaged 17.4 ± 1.72 Mcounts/m in mCT and 29.1 ± 2.83 Mcounts/m in Vision. Furthermore, NECdensity averaged 0.29 ± 0.05 kcounts/cm3 in mCT and 0.53 ± 0.09 kcounts/cm3 in Vision, respectively, whereas SNRliver averaged 14.6 ± 3.77% in mCT and 21.3 ± 1.69% in Vision (P = 0.0156), respectively. Finally, SUVliver averaged 2.82 ± 0.28 and 2.55 ± 0.30, SUVlesion ranged 1.6–17.6 and 1.9–22.9 in mCT and Vision, respectively.

Conclusion

SiPM-PET/CT provides superior image quality and quantification accuracy compared to PMT-PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedures guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  2. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–S150150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5–19.

    Article  PubMed  Google Scholar 

  4. Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier–based time-of-flight PET/CT system. J Nucl Med. 2017;58:1511–8.

    Article  CAS  PubMed  Google Scholar 

  5. Melcher CL. Scintillation crystals for PET. J Nucl Med. 2000;41:1051–5.

    CAS  PubMed  Google Scholar 

  6. Pepin CM, Berard P, Perrot AL, Pepin C, Houde D, Lecomte R, et al. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans Nucl Sci. 2004;51(3):789–95.

    Article  CAS  Google Scholar 

  7. Everaert H, Vanhove C, Lahoutte T, Muylle K, Caveliers V, Bossuyt A, et al. Optimal dose of 18F-FDG required for whole-body PET using an LSO PET camera. Eur J Nucl Med Mol Imaging. 2003;30(12):1615–9.

    Article  CAS  PubMed  Google Scholar 

  8. Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50:1325–30.

    Article  Google Scholar 

  9. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56:2375–89.

    Article  CAS  PubMed  Google Scholar 

  10. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010;51(2):237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ullah MN, Pratiwi E, Cheon J, Choi H, Yeom JY. Instrumentation for time-of-flight positron emission tomography. Nucl Med Mol Imaging. 2016;50:112–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40(6):064301.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: Jakoby BW, Bercier Y, Watson CC, Bendriem B, TOWNSEND DW. Performance characteristics of a new LSO PET/CT scanner with extended axial FOV and PSF reconstruction. IEEE Trans Nucl Sci. 2009;56:633–9.

    Article  Google Scholar 

  14. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med. 2012;53(11):1716–22.

    Article  PubMed  Google Scholar 

  15. Bellevre D, Blanc Fournier C, Switsers O, Dugué AE, Levy C, Allouache D, et al. Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems? Eur J Nucl Med Mol Imaging. 2014;41(6):1103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong S, Alessio AM, Thielemans K, Stearns C, Ross S, Kinahan PE. Properties and mitigation of edge artifacts in PSF-based PET reconstruction. IEEE Trans Nucl Sci. 2011;58(5):2264–75.

    Article  Google Scholar 

  17. Tsutsui Y, Awamoto S, Himuro K, Umezu Y, Baba S, Sasaki M. Edge artifacts in point spread function-based PET reconstruction in relation to object size and reconstruction parameters. Asia Ocean J Nucl Med Biol. 2017;5(2):134–43 (Spring).

    PubMed  PubMed Central  Google Scholar 

  18. MacDonald LR, Harrison RL, Alessio AM, Hunter WC, Lewellen TK, Kinahan PE. Effective count-rates for PET scanners with reduced and extended axial field of view. Phys Med Biol. 2011;56(12):3629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akamatsu G, Uba K, Taniguchi T, Mitsumoto K, Narisue A, Tsutsui Y, et al. Impact of time-of-flight PET/CT with a large axial OVOV of view for reducing whole-body acquisition time. J Nucl Med Technol. 2014;42(2):101–4.

    Article  PubMed  Google Scholar 

  20. Sonni I, Baratto L, Park S, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. David S, Georgiou M, Fysikopoulos E, Loudos G. Evaluation of a SiPM array coupled to a Gd3Al2Ga3O12: Ce (GAGG:Ce) discrete scintillator. Phys Med. 2015;31(7):763–6.

    Article  CAS  PubMed  Google Scholar 

  22. Wagatsuma K, Miwa K, Sakata M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.

    Article  PubMed  Google Scholar 

  23. Gnesin S, Kieffer C, Zeimpekis K, et al. Phantom-based image quality assessment of clinical 18F-FDG protocols in digital PET/CT and comparison to conventional PMT-based PET/CT. EJNMMI Phys. 2020;7(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kunnen B, Beijit C, Lam MGEH, et al. Comparison of the biograph vision and biograph mCT for quantitative 90Y PET/CT imaging for radioembolisation. EJNMMI Phys. 2020;7(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Surti S. Update on time-of-flight PET imaging. J Nucl Med. 2015;56:98–105.

    Article  PubMed  Google Scholar 

  26. van Sluis J, de Jong J, Schaar J, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60(7):1031–6.

    Article  PubMed  CAS  Google Scholar 

  27. van Sluis J, Boellaard R, Somasundaram A, et al. Image quality and semi-quantitative measurements of the Siemens biograph vision PET/CT: initial experiences and comparison with Siemens Biograph mCT PET/CT. J Nucl Med. 2020;61(1):129–35.

    Article  PubMed  CAS  Google Scholar 

  28. Fukukita H, Suzuki K, Matsumoto K, et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of version 2.0. Ann Nucl Med. 2014;28(7):693–705.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen YM, Huang G, Sun XG, et al. Optimizing delayed scan time for FDG PET: comparison of the early and late delayed scan. Nucl Med Commun. 2008;29(5):425–30.

    Article  PubMed  Google Scholar 

  30. Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clin Transl Imaging. 2019;7(2):139–47.

    Article  Google Scholar 

  31. Al-Faham Z, Jolepalem P, Rydberg J, et al. Optimizing 18F-FDG uptake time before imaging improves the accuracy of PET/CT in liver lesions. J Nucl Med Technol. 2016;44(2):70–2.

    Article  PubMed  Google Scholar 

  32. Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-offlight PET. EJNMMI Phys. 2016;3:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaskowiak CJ, Bianco JA, Perlman SB, et al. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46(3):424–8.

    PubMed  Google Scholar 

  34. Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol. 2010;55(5):1453–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of division of radiology, department of medical technology, Kyushu University Hospital for valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Tsutsui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsui, Y., Awamoto, S., Himuro, K. et al. Evaluating and comparing the image quality and quantification accuracy of SiPM-PET/CT and PMT-PET/CT. Ann Nucl Med 34, 725–735 (2020). https://doi.org/10.1007/s12149-020-01496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-020-01496-1

Keywords

Navigation