Skip to main content

Advertisement

Log in

Clinical implication of myocardial FDG uptake pattern in oncologic PET: retrospective comparison study with stress myocardial perfusion imaging as the reference standard

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Objective

The purpose of this study was to determine the clinical implication of the myocardial FDG uptake patterns by comparing with the results of stress myocardial perfusion imaging (MPI) as the reference standard.

Methods

By reviewing the medical records, 86 pairs of stress MPI and FDG PET/CT of 84 patients who underwent stress MPI and oncologic FDG PET/CT in 1 month were included in this study. The patterns of the myocardial FDG uptake were classified into five patterns such as ‘low’, ‘diffuse’, ‘basal ring’, ‘focal high’, and ‘focal defect on diffuse high’. MPI was evaluated using a 5-point scoring model ranging from 0 (normal uptake) to 4 (uptake absent) based on the 17-segment model. The summed stress score of 4 or higher was defined as ‘abnormal MPI’. Factors predictive of abnormal MPI were analyzed using a log-rank multivariate test and p < 0.05 was set as significant.

Results

Abnormal MPI was observed in only 16 of 36 (44%) patients with ‘low’ pattern, 10 of 23 (43%) patients with ‘diffuse high’ pattern, and 1 of 9 (11%) patients with ‘basal ring’ pattern, but in 8 of 9 (89%) patients with ‘focal high’ pattern, and 8 of 9 (89%) patients with ‘focal defect on diffuse high’ pattern. The log-rank multivariate test revealed that ‘focal high’ and ‘focal defect on diffuse high’ pattern were correlated with an abnormal MPI.

Conclusions

These results indicate that further cardiac work-up might be helpful in the patients with ‘focal high’ pattern or ‘focal defect on diffuse high’ pattern of myocardial FDG at oncologic PET. A prospective study should be needed to further support this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hanna L, et al. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer. 2009;115(2):410–8.

    Article  PubMed  Google Scholar 

  2. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.

    Article  CAS  PubMed  Google Scholar 

  3. Lucignani G, Paolini G, Landoni C, Zuccari M, Paganelli G, Galli L, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med. 1992;19(10):874–81.

    Article  CAS  PubMed  Google Scholar 

  4. Uehara T, Ishida Y, Hayashida K, Shimonagata T, Miyake Y, Sago M, et al. Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy: assessment by F-18-FDG PET study. Ann Nucl Med. 1998;12(2):95–103.

    Article  CAS  PubMed  Google Scholar 

  5. Vilain D, Bochet J, Le Stanc E, Wattel C, Hameg A, Tainturier C. Unsuspected hibernating myocardium detected by routine oncology (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2010;37(2):409.

    Article  PubMed  Google Scholar 

  6. Hiasa G, Okayama H, Kawaguchi N, Kazatani Y. Coronary artery disease incidentally detected by routine oncology F-18-fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2018;25(2):688–90.

    Article  PubMed  Google Scholar 

  7. Minamimoto R, Morooka M, Miyata Y, Ito K, Okasaki M, Hara H, et al. Incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Ann Nucl Med. 2013;27(6):572–80.

    Article  PubMed  Google Scholar 

  8. Yamanouchi M, Yoshida K, Niwayama H, Nakagawa K, Aioi S, Shikama N, et al. Effect of the duration of fasting on myocardial fluorine-18-fluorodeoxyglucose positron emission tomography images in normal males. Jpn Circ J. 1996;60(6):319–27.

    Article  CAS  PubMed  Google Scholar 

  9. Nose H, Otsuka H, Otomi Y, Terazawa K, Takao S, Iwamoto S, et al. The physiological uptake pattern of (18)F-FDG in the left ventricular myocardium of patients without heart disease. J Med Invest. 2014;61(1–2):53–8.

    Article  PubMed  Google Scholar 

  10. Maurer AH, Burshteyn M, Adler LP, Gaughan JP, Steiner RM. Variable cardiac 18FDG patterns seen in oncologic positron emission tomography computed tomography: importance for differentiating normal physiology from cardiac and paracardiac disease. J Thorac Imaging. 2012;27(4):263–8.

    Article  PubMed  Google Scholar 

  11. Takanami K, Arai A, Umezawa R, Takeuchi T, Kadoya N, Taki Y, et al. Association between radiation dose to the heart and myocardial fatty acid metabolic impairment due to chemoradiation-therapy: Prospective study using I-123 BMIPP SPECT/CT. Radiother Oncol. 2016;119:77.

    Article  CAS  PubMed  Google Scholar 

  12. Jingu K, Nemoto K, Kaneta T, Oikawa M, Ogawa Y, Ariga H, et al. Temporal change in brain natriuretic peptide after radiotherapy for thoracic esophageal cancer. Int J Radiat Oncol Biol Phys. 2007;69(5):1417–23.

    Article  CAS  PubMed  Google Scholar 

  13. Ramirez R, Trivieri M, Fayad ZA, Ahmadi A, Narula J, Argulian E. Advanced imaging in cardiac sarcoidosis. J Nucl Med. 2019;60(7):892–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. Doxorubicin effect on myocardial metabolism as a pre-requisite for subsequent development of cardiac toxicity: a translational 18F-FDG PET/CT observation. J Nucl Med. 2017;58:1638.

    Article  CAS  PubMed  Google Scholar 

  15. Tilkemeier PL, Bourque J, Doukky R, Sanghani R, Weinberg RL. ASNC imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol. 2017;24(6):2064–128.

    Article  PubMed  Google Scholar 

  16. Berman DS, Kang XP, Van Train KF, Lewin HC, Cohen I, Areeda J, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1998;32(7):1987–95.

    Article  CAS  PubMed  Google Scholar 

  17. Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, et al. Single photon-emission computed tomography. J Nucl Cardiol. 2010;17(5):941–73.

    Article  PubMed  Google Scholar 

  18. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360–3.

    PubMed  Google Scholar 

  19. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187–226.

    Article  PubMed  Google Scholar 

  20. Abbott BG, Liu YH, Arrighi JA. [18F]Fluorodeoxyglucose as a memory marker of transient myocardial ischaemia. Nucl Med Commun. 2007;28(2):89–94.

    Article  CAS  PubMed  Google Scholar 

  21. Lyall A, Capobianco J, Strauss HW, Gonen M, Schoder H. Treadmill exercise inducing mild to moderate ischemia has no significant effect on skeletal muscle or cardiac 18F-FDG uptake and image quality on subsequent whole-body PET scan. J Nucl Med. 2012;53(6):917–21.

    Article  PubMed  Google Scholar 

  22. Dou KF, Xie BQ, Gao XJ, Li Y, Yang YJ, He ZX, et al. Use of resting myocardial 18F-FDG imaging in the detection of unstable angina. Nucl Med Commun. 2015;36(10):999–1006.

    Article  PubMed  Google Scholar 

  23. de Groot M, Meeuwis AP, Kok PJ, Corstens FH, Oyen WJ. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut. Eur J Nucl Med Mol Imaging. 2005;32(1):98–101.

    Article  PubMed  Google Scholar 

  24. Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med. 2014;55(1):99–106.

    Article  PubMed  Google Scholar 

  25. Bertagna F, Treglia G. Comment on Minamimoto: incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Ann Nucl Med. 2013;27(9):870–1.

    Article  PubMed  Google Scholar 

  26. Fukuchi K, Ohta H, Matsumura K, Ishida Y. Benign variations and incidental abnormalities of myocardial FDG uptake in the fasting state as encountered during routine oncology positron emission tomography studies. Brit J Radiol. 2007;80(949):3–11.

    Article  CAS  PubMed  Google Scholar 

  27. Abel ED. Glucose transport in the heart. Front Biosci. 2004;9:201–15.

    Article  CAS  PubMed  Google Scholar 

  28. Israel O, Weiler-Sagie M, Rispler S, Bar-Shalom R, Frenkel A, Keidar Z, et al. PET/CT quantitation of the effect of patient-related factors on cardiac 18F-FDG uptake. J Nucl Med. 2007;48(2):234–9.

    CAS  PubMed  Google Scholar 

  29. Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Chronic Stable Angina). J Am Coll Cardiol. 1999;33(7):2092–197.

    Article  CAS  PubMed  Google Scholar 

  30. Kapur A, Latus KA, Davies G, Dhawan RT, Eastick S, Jarritt PH, et al. A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging. 2002;29(12):1608–16.

    Article  CAS  PubMed  Google Scholar 

  31. Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol. 1997;29(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  32. Dai N, Zhang X, Zhang Y, Hou L, Li W, Fan B, et al. Enhanced diagnostic utility achieved by myocardial blood analysis: a meta-analysis of noninvasive cardiac imaging in the detection of functional coronary artery disease. Int J Cardiol. 2016;221:665–73.

    Article  PubMed  Google Scholar 

  33. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2(10):1100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Danad I, Szymonifka J, Twisk JR, Norgaard BL, Zarins CK, Knaapen P, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J. 2017;38(13):991.

    PubMed  Google Scholar 

  35. Gaemperli O, Schepis T, Valenta I, Koepfli P, Husmann L, Scheffel H, et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology. 2008;248(2):414–23.

    Article  PubMed  Google Scholar 

  36. Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med. 2005;46(8):1294–300.

    PubMed  Google Scholar 

  37. Miller TD, Roger VL, Milavetz JJ, Hopfenspirger MR, Milavetz DL, Hodge DO, et al. Assessment of the exercise electrocardiogram in women versus men using tomographic myocardial perfusion imaging as the reference standard. Am J Cardiol. 2001;87(7):868–73.

    Article  CAS  PubMed  Google Scholar 

  38. Nakahara T, Toyama T, Jinzaki M, Seki R, Saito Y, Higuchi T, et al. Quantitative analysis of iodine image of dual-energy computed tomography at rest comparison With Tc-99m-tetrofosmin stress-rest single-photon emission computed tomography myocardial perfusion imaging as the reference standard. J Thorac Imag. 2018;33(2):97–104.

    Article  Google Scholar 

  39. Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48(12):2508–14.

    Article  PubMed  Google Scholar 

  40. Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: a translational F-18-FDG PET/CT observation. J Nucl Med. 2017;58(10):1638–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Takanami.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (include name of committee + reference number) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takanami, K., Saito, M., Matsumoto, Y. et al. Clinical implication of myocardial FDG uptake pattern in oncologic PET: retrospective comparison study with stress myocardial perfusion imaging as the reference standard. Ann Nucl Med 34, 233–243 (2020). https://doi.org/10.1007/s12149-020-01437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-020-01437-y

Keywords

Navigation