Skip to main content
Log in

Evaluation of the effects of chemotherapy on brain glucose metabolism in children with Hodgkin’s lymphoma

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Chemobrain is a recently proposed pathological entity. 18F-FDG PET/CT can show objective abnormalities to explain brain disorders caused by chemotherapy, although no study has investigated these phenomena in children to date. The main objective of the present study was to examine quantitatively the effects of chemotherapy on brain metabolism in a homogeneous population of children treated for Hodgkin's lymphoma using 18F-FDG PET/CT.

Methods

In this retrospective study, we included 20 children, newly diagnosed with Hodgkin’s lymphoma, who underwent 18F-FDG PET/CT at initial staging and at least one PET/CT in follow-up. The SPM12 software provided t-maps to show the difference in metabolism between these PET/CTs. The statistical maps were analyzed with xjView software to identify the brain regions associated with the clusters detected.

Results

Altered glucose metabolism was found in the frontal, cingular, and temporoinsular regions after two cycles of chemotherapy. Results in children were compared to a group of 35 adults. For the same statistical threshold, the extent and depth of the metabolic alterations were less in the adult group than in children.

Conclusions

18F-FDG PET/CT is useful in providing objective data to explain brain disorders caused by chemotherapy. This could lead to better care and should be compared to neuropsychological test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PET:

Positon emission tomography

CT:

Computed tomography

FDG:

Fluorodesoxyglucose

IQ:

Intelligence quotient

OEPA:

Vincristine, etoposide, prednisone and doxorubicin

ABVD:

Doxorubicin, bleomycin, vinblastine and dacarbazine

BEACOPP:

Bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone

OSEM:

Ordered-subsets expectation maximization

MNI:

Montreal Neurological Institute

FWHM:

Full width at half maximum

FWE:

Family-wise error

References

  1. Hodgson KD, Hutchinson AD, Wilson CJ, Nettelbeck T. A meta-analysis of the effects of chemotherapy on cognition in patients with cancer. Cancer Treat Rev. 2013;39:297–304.

    Article  CAS  PubMed  Google Scholar 

  2. Wefel JS, Lenzi R, Theriault R, Buzdar AU, Cruickshank S, Meyers CA. “Chemobrain” in breast carcinoma?: a prologue. Cancer. 2004;101:466–75.

    Article  PubMed  Google Scholar 

  3. Ponto LLB, Menda Y, Magnotta VA, Yamada TH, Denburg NL, Schultz SK. Frontal hypometabolism in elderly breast cancer survivors determined by [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET): a pilot study. Int J Geriatr Psychiatry. 2015;30:587–94.

    Article  PubMed  Google Scholar 

  4. Silverman DHS, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103:303–11.

    Article  CAS  PubMed  Google Scholar 

  5. Goldfarb L, Hubele F, Noblet V, Fornecker L-M, Namer IJ. Étude préliminaire sur les effets de la chimiothérapie sur le métabolisme cérébral des patients traités pour un lymphome de Hodgkin. Médecine Nucléaire. 2017;41:93–8.

    Article  Google Scholar 

  6. Chiaravalloti A, Pagani M, Di Pietro B, Danieli R, Tavolozza M, Travascio L, et al. Is cerebral glucose metabolism affected by chemotherapy in patients with Hodgkin’s lymphoma? Nucl Med Commun. 2013;34:57–63.

    Article  CAS  PubMed  Google Scholar 

  7. Sorokin J, Saboury B, Ahn JA, Moghbel M, Basu S, Alavi A. Adverse functional effects of chemotherapy on whole-brain metabolism: a PET/CT quantitative analysis of FDG metabolic pattern of the “chemo-brain”. Clin Nucl Med. 2014;39:e35–9.

    Article  PubMed  Google Scholar 

  8. Baudino B, Dagata F, Caroppo P, Castellano G, Cauda S, Manfredi M, et al. The chemotherapy long-term effect on cognitive functions and brain metabolism in lymphoma patients. Q J Nucl Med Mol Imaging. 2012;56:559–68.

    CAS  PubMed  Google Scholar 

  9. Moore HCF. An overview of chemotherapy-related cognitive dysfunction, or “chemobrain”. Oncology (Williston Park, NY). 2014;28:797–804.

    Google Scholar 

  10. Jean-Pierre P, McDonald BC. Neuroepidemiology of cancer and treatment-related neurocognitive dysfunction in adult-onset cancer patients and survivors. Handb Clin Neurol. 2016;138:297–309.

    Article  CAS  PubMed  Google Scholar 

  11. Holmes D. Trying to unravel the mysteries of chemobrain. Lancet Neurol. 2013;12:533–4.

    Article  PubMed  Google Scholar 

  12. Chiaravalloti A, Pagani M, Cantonetti M, Pietro DI, Tavolozza M, Travascio L, et al. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: an 18F-FDG PET/CT study. Oncol Lett. 2015;9:685–90.

    Article  PubMed  Google Scholar 

  13. Robison LL, Green DM, Hudson M, Meadows AT, Mertens AC, Packer RJ, et al. Long-term outcomes of adult survivors of childhood cancer. Cancer. 2005;104:2557–644.

    Article  PubMed  Google Scholar 

  14. Landier W, Armenian S, Bhatia S. Late effects of childhood cancer and its treatment. Pediatr Clin North Am. 2015;62:275–300.

    Article  PubMed  Google Scholar 

  15. Simó M, Rifà-Ros X, Rodriguez-Fornells A, Bruna J. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:1311–21.

    Article  PubMed  Google Scholar 

  16. Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kluge R, Kurch L, Georgi T, Metzger M. Current role of FDG-PET in pediatric Hodgkin’s lymphoma. Semin Nucl Med. 2017;47:242–57.

    Article  PubMed  Google Scholar 

  18. Dietrich J, Monje M, Wefel J, Meyers C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist. 2008;13:1285–95.

    Article  PubMed  Google Scholar 

  19. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and neurotoxicology. Neurotoxicology. 2012;33:586–604.

    Article  CAS  PubMed  Google Scholar 

  20. Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3:46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Konsman JP, Vigues S, Mackerlova L, Bristow A, Blomqvist A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol. 2004;472:113–29.

    Article  PubMed  Google Scholar 

  22. Wang X-M, Walitt B, Saligan L, Tiwari AFY, Cheung CW, Zhang Z-J. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72:86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raffa RB. A proposed mechanism for chemotherapy-related cognitive impairment ('chemo-fog’). J Clin Pharm Ther. 2011;36:257–9.

    Article  CAS  PubMed  Google Scholar 

  24. Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, et al. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem. 2007;100:191–201.

    Article  CAS  PubMed  Google Scholar 

  25. Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, et al. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience. 2010;166:796–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Christie L-A, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res. 2012;18:1954–65.

    Article  CAS  PubMed  Google Scholar 

  27. Liedke PER, Reolon GK, Kilpp B, Brunetto AL, Roesler R, Schwartsmann G. Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav. 2009;94:239–43.

    Article  CAS  PubMed  Google Scholar 

  28. Kaplan SV, Limbocker RA, Gehringer RC, Divis JL, Osterhaus GL, Newby MD, et al. Impaired brain dopamine and serotonin release and uptake in wistar rats following treatment with carboplatin. ACS Chem Neurosci. 2016;7:689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minisini A, Atalay G, Bottomley A, Puglisi F, Piccart M, Biganzoli L. What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol. 2004;5:273–82.

    Article  PubMed  Google Scholar 

  30. Shilling V, Jenkins V, Fallowfield L, Howell T. The effects of hormone therapy on cognition in breast cancer. J Steroid Biochem Mol Biol. 2003;86:405–12.

    Article  CAS  PubMed  Google Scholar 

  31. Wilner AP, de Varennes B, Gregoire PA, Lupien S, Pruessner JC. Glucocorticoids and hippocampal atrophy after heart transplantation. Ann Thorac Surg. 2002;73:1965–7.

    Article  PubMed  Google Scholar 

  32. Höschl C, Hajek T. Hippocampal damage mediated by corticosteroids—a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci. 2001;251(Suppl 2):II81–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Bund.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauty, A., Noblet, V., Paillard, C. et al. Evaluation of the effects of chemotherapy on brain glucose metabolism in children with Hodgkin’s lymphoma. Ann Nucl Med 33, 564–569 (2019). https://doi.org/10.1007/s12149-019-01363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-019-01363-8

Keywords

Navigation