Annals of Nuclear Medicine

, Volume 32, Issue 5, pp 337–347 | Cite as

Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction

  • Tobias Bexelius
  • Antti Sohlberg
Original Article



Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing.


Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies.


The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included.


GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.


SPECT reconstruction Scatter correction Monte Carlo Graphics processing unit (GPU) 



Tobias Bexelius works for HERMES Medical Solutions and Antti Sohlberg has a consulting agreement with HERMES Medical Solutions.


  1. 1.
    Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for (99 m)Tc myocardial perfusion imaging. J Nucl Med. 2003;44:1725–34.PubMedGoogle Scholar
  2. 2.
    Niu X, Yang Y, Jin M, Wernick MN, King MA. Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction. Med Phys. 2011;38:6571–84.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:761 – 82.CrossRefPubMedGoogle Scholar
  4. 4.
    Frey EC, Gilland KL, Tsui BM. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT. IEEE Trans Med Imaging. 2002;21:1040–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRefGoogle Scholar
  6. 6.
    Di Bella EVR, Barclay AB, Eisner RL, Schafer RW. A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1996;43:3370–6.CrossRefGoogle Scholar
  7. 7.
    Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53:N277–N285.CrossRefPubMedGoogle Scholar
  8. 8.
    Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S. et. al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRefPubMedGoogle Scholar
  9. 9.
    Delcroix O, Robin P, Gouillou M, Le Duc-Pennec A, Alavi Z, Le Roux PY, et al. New SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases. EJNMMI Res. 2018;8:14.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hutton BF, et al. GPU accelerated rotation-based emission tomography reconstruction. IEEE Nuclear Science Symposium Conference Record 2010;2657–2661.Google Scholar
  11. 11.
    Ha S, Matej S, Ispiryan M, Mueller K. GPU-accelerated forward and back-projections with spatially varying kernels for 3D DIRECT TOF PET reconstruction. IEEE Trans Nucl Sci. 2013;60:166–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kangasmaa TS, Constable C, Hippeläinen E, Sohlberg AO. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software. Nucl Med Commun. 2016;37:983–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun. 2011;32:1040–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of Lu-177 SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res. 2016;6:16.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Woliner-van der Weg W, Deden LN, Meeuwis AP, Koenrades M, Peeters LH, Kuipers H, Laanstra GJ, Gotthardt M, Slump CH, Visser EP. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin. EJNMMI Phys. 2016;3:29.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Proc Conf Appl Comput Methods Reactor Probl. 1965;557:2.Google Scholar
  17. 17.
    Berger M, Hubbell J. XCOM. Photon cross sections on a personal computer. Natl Bur Stand Washington, DC (USA). Cent Radiat Res. 1987.Google Scholar
  18. 18.
    De Jong HWAM., Slijpen ETP, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Trans Nucl Sci. 2001;48:58–64.CrossRefGoogle Scholar
  19. 19.
    Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random numbers: as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis 2011;1–12.Google Scholar
  20. 20.
    Doornik JA. Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul. 2007;17:3.CrossRefGoogle Scholar
  21. 21.
    Satish N, Harris M, Garland M. Designing efficient sorting algorithms for manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. 2009. pp. 1–10.Google Scholar
  22. 22.
    Zelen M, Severo NC. Probability functions. Handb Math Funct 1964 5;925–995.Google Scholar
  23. 23.
    Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–15.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imag 2009;28:435–445.CrossRefGoogle Scholar
  25. 25.
    Despres P, Jia X. A review of GPU-based medical image reconstruction. Phys Med. 2017;42:76–92.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2018

Authors and Affiliations

  1. 1.HERMES Medical SolutionsStockholmSweden
  2. 2.Laboratory of Clinical Physiology and Nuclear MedicineJoint Authority for Päijät-Häme Social and Health CareLahtiFinland

Personalised recommendations