Annals of Nuclear Medicine

, Volume 32, Issue 3, pp 151–164 | Cite as

Paradigm shift in theranostics of neuroendocrine tumors: conceptual horizons of nanotechnology in nuclear medicine

  • Geetanjali Arora
  • Gurupad Bandopadhyaya
Review Article


We present a comprehensive review of Neuroendocrine Tumors (NET) and the current and developing imaging and therapeutic modalities for NET with emphasis on Nuclear Medicine modalities. Subsequently, nanotechnology and its emerging role in cancer management, especially NET, are discussed. The article is both educative and informative. The objective is to provide an insight into the developments made in nuclear medicine and nanotechnology towards management of NET, individually as well as combined together.


Neuroendocrine tumors Nanoparticles Radionuclide therapy Drug delivery 





  1. 1.
    Oberg KE. Management of neuroendocrine tumors: current and future therapies. Exp Rev Endocrinol Metab. 2011;6:49–62.CrossRefGoogle Scholar
  2. 2.
    Boudreaux JP, Klimstra DS, Hassan MM, Woltering EA, Jensen RT, Goldsmith SJ, et al. The NANET consensus guideline for the diagnosis and management of neuroendocrine tumors (well-differentiated neuroendocrine tumors of the jejunum, ileum, appendix, and cecum). Pancreas. 2010;39:753–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39:707–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Patel YC. Somatostatin and its receptor family. Front Neuroendocrin. 1999;20:157–98.CrossRefGoogle Scholar
  5. 5.
    Bal CS, Gupta SK, Zaknun JJ. Radiolabeled somatostatin analogs for radionuclide imaging and therapy in patients with gastroenteropancreatic neuroendocrine tumors. Trop Gastroenterol. 2010;31:87–95.PubMedGoogle Scholar
  6. 6.
    Bronstein-Sitton N. Somatostatin and the somatostatin receptors: versatile regulators of biological activity. Pathways No. 2 Spring. 2006:25–7.Google Scholar
  7. 7.
    Ardill JES, O‘Dorisio TM. Circulating biomarkers in neuroendocrine tumors of the enteropancreatic tract: application to diagnosis, monitoring disease, and as prognostic indicators. Endocrinol Metab Clin N Am. 2010;39:777–90.CrossRefGoogle Scholar
  8. 8.
    Rufini V, Calcagni M, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.CrossRefPubMedGoogle Scholar
  9. 9.
    Gotthardt M, Dijkgraaf I, Boerman OC, Oyen WJG. Nuclear medicine imaging and therapy of neuroendocrine tumors. Cancer Imaging. 2006;6:S178–84.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Teunissen JJM, Kwekkeboom DJ, Valkema R, Krenning EP. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumors. Endocr Relat Cancer. 2011;18:S27–S51.CrossRefPubMedGoogle Scholar
  11. 11.
    Weiner RE, Thakur ML. Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med. 2001;31:296–311.CrossRefPubMedGoogle Scholar
  12. 12.
    Balon HR, Goldsmith SJ, Siegel BA, Silberstein EB, Donohoe KJ, Krenning EP, et al. Society of nuclear medicine procedure guideline for somatostatin receptor scintigraphy with In-111 pentetreotide (version 1.0, approved February 21, 2001). Society of nuclear medicine procedure guidelines manual; 2002. p. 147–51.Google Scholar
  13. 13.
    Dimitroulopoulos D, Zisimopoulos A, Xinopoulos D, Tsamakidis K, Andriotis E, Fotopoulou E, et al. Somatostatin receptor scintigraphy with In-111 Octreotide in the detection of gastroenteropancreatic carcinoids and their metastases. Ann Gastroenterol. 2003;16:339–45.Google Scholar
  14. 14.
    Schillaci O. Functional–anatomical image fusion in neuroendocrine tumors. Cancer Biother Radiopharm. 2004;19:129–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Decristoforo C, Maina T, Nock B, Gabriel M, Cordopatis P, Moncayo R. 99mTc-Demotate 1: first data in tumor patients-results of a pilot/ phase 1 study. Eur J Nucl Med Mol Imaging. 2003;30:1211–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kopecky M, Trejtnar F, Laznicek M, Laznickova A, Semecky V, Maina T, et al. 99mTc Demotate 1: biodistribution and elimination characteristics in rats. Nucl Med Commun. 2005;26:549–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Maina T, Nock BA, Cordopatis P, Bernard BF, Breeman WA, van Gameren A, et al. 99mTc Demotate 2 in the detection of SST2-positive tumors: a preclinical comparison with 111In DOTA-TATE. Eur J Nucl Med Mol Imaging. 2006;33:831–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Cwikla JB, Mikolajczak R, Pawlak D, Buscombe JR, Nasierowska-Guttmejer A, Bator A, et al. Initial direct comparison of 99mTc-TOC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NET. J Nucl Med. 2008;49:1060–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.CrossRefPubMedGoogle Scholar
  21. 21.
    Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Al-Nahhas A, Win Z, Szyszko T, Singh A, Nanni C, Fanti S, et al. Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res. 2007;27:4087–94.PubMedGoogle Scholar
  23. 23.
    Laverman P, McBride WJ, Sharkey RM, Eek A, Joosten L, Oyen WJG, et al. A novel facile method of labeling octreotide with 18F-fluorine. J Nucl Med. 2010;51:454–61.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Laverman P, D’Souza CA, Eek A, McBride WJ, Sharkey RM, Oyen WJG, et al. Optimized labeling of NOTA-conjugated octreotide with F-18. Tumor Biol. 2012;33:427–34.CrossRefGoogle Scholar
  25. 25.
    Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, Hansen CP, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY, et al. 6-L-18F-Fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49:573–86.CrossRefPubMedGoogle Scholar
  27. 27.
    Minn H, Kauhanen S, Seppanen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50:1915–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Lewington VJ. Targeted radionuclide therapy for neuroendocrine tumours. Endocr Relat Cancer. 2003;10:497–501.CrossRefPubMedGoogle Scholar
  29. 29.
    Gedik GK, Hoefnagel CA, Bais E, Olmos RAV. 131I-MIBG therapy in metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2008;35:725–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Bomanji JB, Wong W, Gaze MN, Cassoni A, Waddington W, Solano J, et al. Treatment of neuroendocrine tumours in adults with 131I-MIBG therapy. Clin Oncol (R Coll Radiol). 2003;15:193–8.CrossRefGoogle Scholar
  31. 31.
    Navalkissoor S, Alhashimi DM, Quigley AM, Caplin ME, Buscombe JR. Efficacy of using a standard activity of 131I-MIBG therapy in patients with disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2010;37:904–12.CrossRefPubMedGoogle Scholar
  32. 32.
    Riad R, Kotb M, Omar W, Zaher A, Ebied E, Pitman AG, et al. I-131 mibg therapy for advanced stage III and IV neuroblastoma. J Cancer Ther. 2011;2:481–9.CrossRefGoogle Scholar
  33. 33.
    Grunwald F, Ezziddin S. 131I-Metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2010;40:153–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Voo S, Bucerius J, Mottaghy FM. I-131-MIBG therapies. Methods. 2011;55:238–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52:166–73.PubMedGoogle Scholar
  36. 36.
    de Jong M, Valkema R, Jamar F, Kvols LK, Kwekkeboom DJ, Breeman WAP, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32:133–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJM, van Eijck CHJ, Valkema R, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–R73.CrossRefPubMedGoogle Scholar
  38. 38.
    Ozkan E, Tokmak E, Kucuk NO. Efficacy of adding high-dose In-111 octreotide therapy during sandostatin treatment in patients with disseminated neuroendocrine tumors: clinical results of 14 patients. Ann Nucl Med. 2011;25:425–31.CrossRefPubMedGoogle Scholar
  39. 39.
    Otte A, Herrmann R, Heppeler A, Behe M, Jermann E, Powell P, et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med. 1999;26:1439–47.CrossRefPubMedGoogle Scholar
  40. 40.
    Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand J. The clinical value of [90Y-Dota]-D-Phe1Tyr3Octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12:41–945.CrossRefGoogle Scholar
  41. 41.
    Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and Tandem 90Y/177Lu- DOTATATE: which is a better therapy option. Eur J Nucl Med Mol Imaging. 2011;38:1788–97.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3] octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23:2754–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0,Tyr3] octreotate. J Clin Oncol. 2004;22:2724–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3] Octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.CrossRefPubMedGoogle Scholar
  45. 45.
    Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.CrossRefPubMedGoogle Scholar
  46. 46.
    Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, et al. Comparison of [177Lu-DOTA0,Tyr3] Octreotate and [177Lu- DOTA0, Tyr3] Octreotide: which peptide is preferable for PRRT. Eur J Nucl Med Mol Imaging. 2006;33:1346–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Wehrmann C, Senftleben S, Zachert C, Muller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu-DOTA-TATE and 177Lu-DOTA-NOC. Cancer Biother Radiopharm. 2007;22:406–16.CrossRefPubMedGoogle Scholar
  48. 48.
    de Jong M, Breeman WAP, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46:13S–17S.PubMedGoogle Scholar
  49. 49.
    Seregni E, Maccauro M, Coliva A, Castellani MR, Bajetta E, Aliberti G, et al. Treatment with Tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumors refractory to conventional therapy: preliminary results. Q J Nucl Med Mol Imaging. 2010;54:84–91.PubMedGoogle Scholar
  50. 50.
    Gabriel M, Andergassen U, Putzer D, Kroiss A, Waitz D, Von Guggenberg E, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging. 2010;54:92–9.PubMedGoogle Scholar
  51. 51.
    Pach D, Sowa-Staszczak A, Kunikowska J, Królicki L, Trofimiuk M, Stefanska A, et al. Repeated cycles of peptide receptor radionuclide therapy (PRRT)—results and side-effects of the radioisotope 90Y-DOTA TATE, 177Lu-DOTA TATE Or 90Y/177Lu-DOTA TATE therapy in patients with disseminated NET. Radiother Oncol. 2012;102:45–50.CrossRefPubMedGoogle Scholar
  52. 52.
    Cremonesi M, Botta F, Dia AD, Ferrari M, Bodei L, De Cicco C, et al. Dosimetry for treatment with radiolabelled somatostatin analogues. a review. Q J Nucl Med Mol Imaging. 2010;54:37–51.PubMedGoogle Scholar
  53. 53.
    Vegt E, de Jong M, Wetzels JFM, Masereeuw R, Melis M, Oyen WJG, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.CrossRefPubMedGoogle Scholar
  55. 55.
    De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133–49.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kairemo K, Erba P, Bergstrom K, Pauwels EKJ. Nanoparticles in cancer. Curr Radiopharm. 2008;1:30–6.CrossRefGoogle Scholar
  57. 57.
    Emfietzoglou D, Kostarelos K, Sgouros G. An analytic dosimetry study for the use of radionuclide–liposome conjugates in internal radiotherapy. J Nucl Med. 2001;42:499–504.PubMedGoogle Scholar
  58. 58.
    Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters A, Vile RG, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res. 2001;7:243–54.PubMedGoogle Scholar
  59. 59.
    Wang SX, Bao A, Herrera SJ, Phillips WT, Goins B, Santoyo C, et al. Intraoperative 186Re-liposome radionuclide therapy in a head and neck squamous cell carcinoma xenograft positive surgical margin model. Clin Cancer Res. 2008;14:3975–83.CrossRefPubMedGoogle Scholar
  60. 60.
    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2:8–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee SC, Oh JT, Jang MH, Chung S. Quantitative analysis of polyvinyl alcohol on the surface of poly-(d,l-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. J Control Release. 1999;59:123–32.CrossRefPubMedGoogle Scholar
  62. 62.
    Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA. Minireview: nanoparticles and the immune system. Endocrinology. 2010;151:458–65.CrossRefPubMedGoogle Scholar
  63. 63.
    Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–78.CrossRefPubMedGoogle Scholar
  64. 64.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.PubMedGoogle Scholar
  65. 65.
    Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.CrossRefPubMedGoogle Scholar
  66. 66.
    Fazel-Rezai R. Biomedical engineering—from theory to applications. Ebook published by InTech 2011, ISBN 978-953-307-637-9, Chapter 13.Google Scholar
  67. 67.
    Harrington KJ, Lewanski CR, Stewart JS. Liposomes as vehicles for targeted therapy of cancer. Part 1: preclinical development. Clin Oncol (R Coll Radiol). 2000;12:2–15.Google Scholar
  68. 68.
    Harrington KJ, Lewanski CR, Stewart JS. Liposomes as vehicles for targeted therapy of cancer. Part 2: clinical development. Clin Oncol (R Coll Radiol). 2000;12:16–24.Google Scholar
  69. 69.
    Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, et al. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med. 2005;46:1210–8.PubMedGoogle Scholar
  70. 70.
    Shukla J, Bandopadhyaya GP, Varma IK. 188Rhenium(V)-Dimercaptosuccinic acid loaded Poly-(Lactic-Co-Glycolic) acid microspheres for targeted radiotherapy: production and effectivity. Pharmazie. 2005;60:583–7.PubMedGoogle Scholar
  71. 71.
    DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, et al. Thermal Dosimetry Predictive Of Efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice. J Nucl Med. 2007;48:437–44.CrossRefPubMedGoogle Scholar
  72. 72.
    McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med. 2007;48:1180–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Helbok A, Decristoforo C, Dobrozemsky G, Rangger C, Diederen E, Stark B, et al. Radiolabeling of lipid-based nanoparticles for diagnostics and therapeutic applications: a comparison using different radiometals. J Liposome Res 2010;20:219–27.CrossRefPubMedGoogle Scholar
  74. 74.
    Wang YF, Fu CM, Chuang MH, Cham TM, Chung MI. Magnetically directed targeting aggregation of radiolabelled ferrite nanoparticles. J Nanomater. 2011. PubMedPubMedCentralGoogle Scholar
  75. 75.
    Ocampo-García BE, Ramírez Fde M, Ferro-Flores G, De León-Rodríguez LM, Santos-Cuevas CL, Morales-Avila E, et al. (99 m)Tc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl Med Biol. 2011;38:1–11.CrossRefPubMedGoogle Scholar
  76. 76.
    Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, et al. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-Folate-CDDP/HSA Mnps) in vivo. Int J Nanomed. 2011;6:3077–85.Google Scholar
  77. 77.
    Lingappa M, Song H, Thompson S, Bruchertseifer F, Morgenstern A, Sgouros G. Immunoliposomal delivery of 213Bi for alpha-emitter targeting of metastatic breast cancer. Cancer Res. 2010. Scholar
  78. 78.
    Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 2009;4:399–413.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled dendrimers for nuclear medicine applications. Molecules. 2017;22:1350. Scholar
  80. 80.
    Surujpaul PP, Gutiérrez-Wing C, Ocampo-García B, Ramírez F, de Murphy CA, Pedraza-López M, et al. Gold nanoparticles conjugated to [Tyr3]Octreotide peptide. Biophys Chem. 2008;138:83–90.CrossRefPubMedGoogle Scholar
  81. 81.
    Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19:132–42.CrossRefPubMedGoogle Scholar
  82. 82.
    Dubey N, Shukla J, Hazari PP, Varshney R, Ganeshpurkar A, Mishra AK, et al. Preparation and biological evaluation of paclitaxel loaded biodegradable PCL/PEG nanoparticles for the treatment of human neuroendocrine pancreatic tumor in mice. Hell J Nucl Med. 2012;15:9–15.PubMedGoogle Scholar
  83. 83.
    Arora G, Shukla J, Ghosh S, Maulik SK, Malhotra A, Bandopadhyaya G. PLGA nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: a novel approach towards reduction of renal radiation dose. PLoS One. 2012;7(3):e34019. Scholar
  84. 84.
    Arora G, Dubey P, Shukla J, Ghosh S, Bandopadhyaya G. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: a trailblazing strategy in peptide receptor radionuclide therapy. Ann Nucl Med. 2016;30:334–45.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2018

Authors and Affiliations

  1. 1.Department of Nuclear MedicineAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations