Skip to main content
Log in

Regional myocardial damage and active inflammation in patients with cardiac sarcoidosis detected by non-invasive multi-modal imaging

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Aims

Cardiac sarcoidosis (CS) can be diagnosed using 18F-FDG-PET/CT (PET), cardiovascular magnetic resonance (CMR), and 123I-BMIPP/201TlCl dual myocardial SPECT. This study aims to clarify the relationships among the three modalities with respect to CS.

Methods and results

We evaluated 16 patients (male n = 11; age 55 ± 13 years) with confirmed CS who underwent PET, CMR, and dual SPECT with gated SPECT before starting steroid therapy. The left ventricular myocardium was divided into 17 segments to obtain SUVmax for PET images, defect scores from 0 to 4 (0 normal; 4 absent), and mismatch scores for dual SPECT (BMDS, TLDS, and MS) images and late gadolinium enhancement (LGE) scores (0 none; 1 partly positive; 2 homogeneous) on CMR images. Summed BMDS, TLDS, and MS were 18.6 ± 12.6, 12.9 ± 10.9, and 5.7 ± 3.1, respectively. The segmental BMDS and TLDS scores became significantly higher as the LGE scores increased. The MS scores were significantly higher in areas of LGE with a score of 1 than 0 (both, p < 0.001), but did not significantly differ between areas with LGE scores of 1 and 2. The SUVmax was significantly higher in LGE areas with a score of 1 than 0 (p < 0.025), but did not significantly differ between those with scores of 1 or 2.

Conclusion

Regions with a higher SUVmax indicating active myocardial inflammation were mainly located in areas with LGE, where BMIPP and TL mismatches were evident in patients with CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uemura A, Morimoto S, Hiramitsu S, Kato Y, Ito T, Hishida H. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am Heart J. 1999;138:299–302.

    Article  CAS  PubMed  Google Scholar 

  2. Iwai K, Sekiguti M, Hosoda Y, DeRemee RA, Tazelaar HD, Sharma OP, et al. Racial difference in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis. 1994;11:26–31.

    CAS  PubMed  Google Scholar 

  3. Lagana SM, Parwani AV, Nichols LC. Cardiac sarcoidosis: a pathology-focused review. Arch Pathol Lab Med. 2010;134:1039–46.

    PubMed  Google Scholar 

  4. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

    Article  CAS  PubMed  Google Scholar 

  5. Momose M, Fukushima K, Kondo C, Serizawa N, Suzuki A, Abe K, et al. Diagnosis and detection of myocardial injury in active cardiac sarcoidosis-significance of myocardial fatty acid metabolism and myocardial perfusion mismatch. Circ J. 2015;79:2669–76.

    Article  PubMed  Google Scholar 

  6. Yokoyama R, Miyagawa M, Okayama H, Inoue T, Miki H, Ogimoto A, et al. Quantitative analysis of myocardial (18)F-fluorodeoxyglucose uptake by PET/CT for detection of cardiac sarcoidosis. Int J Cardiol. 2015;195:180–7.

    Article  PubMed  Google Scholar 

  7. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Watanabe E, Kimura F, Nakajima T, Hiroe M, Kasai Y, Nagata M, et al. Late gadolinium enhancement in cardiac sarcoidosis: characteristic magnetic resonance findings and relationship with left ventricular function. J Thorac Imaging. 2013;28:60–6.

    Article  PubMed  Google Scholar 

  9. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, Gorgels AP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45:1683–90.

    Article  PubMed  Google Scholar 

  10. Kawai Y, Tsukamoto E, Nozaki Y, Morita K, Sakurai M, Tamaki N. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol. 2001;38:1888–94.

    Article  CAS  PubMed  Google Scholar 

  11. Kaminaga T, Takeshita T, Yamauchi T, Kawamura H, Yasuda M. The role of iodine-123-labeled 15-(p-iodophenyl)-3R, S-methylpentadecanoic acid scintigraphy in the detection of local myocardial involvement of sarcoidosis. Int J Cardiol. 2004;94:99–103.

    Article  PubMed  Google Scholar 

  12. Mc Ardle BA, Birnie DH, Klein R, de Kemp RA, Leung E, Renaud J, et al. Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by (1)(8)F-fluorodoexyglucose positron emission tomography? Circ Cardiovasc Imaging. 2013;6:617–26.

    Article  PubMed  Google Scholar 

  13. Ishida Y, Yoshinaga K, Miyagawa M, Moroi M, Kondoh C, Kiso K, et al. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28:393–403.

    Article  PubMed  Google Scholar 

  14. Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med. 2014;55:99–106.

    Article  PubMed  Google Scholar 

  15. Galati G, Leone O, Rapezzi C. The difficult diagnosis of isolated cardiac sarcoidosis: usefulness of an integrated MRI and PET approach. Heart. 2014;100:89–90.

    Article  PubMed  Google Scholar 

  16. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16:801–10.

    Article  PubMed  Google Scholar 

  17. Coulden R, Chung P, Sonnex E, Ibrahim Q, Maguire C, Abele J. Suppression of myocardial 18F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol. 2012;22:2221–8.

    Article  PubMed  Google Scholar 

  18. Kobayashi Y, Kumita S, Fukushima Y, Ishihara K, Suda M, Sakurai M. Significant suppression of myocardial (18)F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol. 2013;62:314–9.

    Article  PubMed  Google Scholar 

  19. Scholtens AM, Verberne HJ, Budde RP, Lam MG. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in (1)(8)F-FDG PET Imaging. J Nucl Med. 2016;57:568–73.

    Article  PubMed  Google Scholar 

  20. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  21. Park SY, Cho A, Yu WS, Lee CY, Lee JG, Kim DJ, et al. Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med. 2015;56:45–9.

    Article  CAS  PubMed  Google Scholar 

  22. Matsui Y, Iwai K, Tachibana T, Fruie T, Shigematsu N, Izumi T, et al. Clinicopathological study of fatal myocardial sarcoidosis. Ann N Y Acad Sci. 1976;278:455–69.

    Article  CAS  PubMed  Google Scholar 

  23. Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011;261:358–74.

    Article  PubMed  Google Scholar 

  24. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105:162–7.

    Article  PubMed  Google Scholar 

  25. Nakata T, Hashimoto A, Kobayashi H, Miyamoto K, Tsuchihashi K, Miura T, et al. Outcome significance of thallium-201 and iodine-123-BMIPP perfusion-metabolism mismatch in preinfarction angina. J Nucl Med. 1998;39:1492–9.

    CAS  PubMed  Google Scholar 

  26. Hashimura H, Kiso K, Yamada N, Kono A, Morita Y, Fukushima K, et al. Myocardial impairment detected by late gadolinium enhancement in hypertrophic cardiomyopathy: comparison with 99mTc-MIBI/tetrofosmin and 123I-BMIPP SPECT. Kobe J Med Sci. 2013;59:E81–92.

    PubMed  Google Scholar 

  27. Ishida Y, Yasumura Y, Nagaya N, Fukuchi K, Komamura K, Takamiya M, et al. Myocardial imaging with 123I-BMIPP in patients with congestive heart failure. Int J Card Imaging. 1999;15:71–7.

    Article  CAS  PubMed  Google Scholar 

  28. Zavadovsky KV, Gulya MO, Lishmanov YB, Lebedev DI. Perfusion and metabolic scintigraphy with (123)I-BMIPP in prognosis of cardiac resynchronization therapy in patients with dilated cardiomyopathy. Ann Nucl Med. 2016;30:325–33.

    Article  CAS  PubMed  Google Scholar 

  29. Tsujimura E, Kusuoka H, Fukuchi K, Hasegawa S, Yutani K, Hori M, et al. Changes in perfusion and fatty acid metabolism of rat heart with autoimmune myocarditis. Ann Nucl Med. 2000;14:361–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sawada T, Kohno Y, Ikegami H, Tsujii H, Ikuta H, Okabe H, et al. Detection of Coxsackie B2 virus myocarditis in a neonate using Tl-201 and I-123 BMIPP myocardial imaging. Clin Nucl Med. 2000;25:77–8.

    Article  CAS  PubMed  Google Scholar 

  31. Shikama N, Nakagawa T, Takiguchi Y, Aotsuka N, Kuwabara Y, Komiyama N, et al. Assessment of myocardial perfusion and fatty acid metabolism in a patient with Churg-Strauss syndrome associated with eosinophilic heart disease. Circ J. 2004;68:595–8.

    Article  PubMed  Google Scholar 

  32. Tobita T, Momose M, Suzuki A, Fukushima K, Kondo C, Uto K, et al. Steroid therapy ameliorated myocardial fatty acid metabolism with recovery of complete atrioventricular block in cardiac sarcoidosis. Circ J. 2016;80:1265–6.

    Article  PubMed  Google Scholar 

  33. Shenthar J, Milasinovic G, Al Fagih A, Gotte M, Engel G, Wolff S, et al. MRI scanning in patients with new and existing CapSureFix Novus 5076 pacemaker leads: Randomized trial results. Heart Rhythm. 2014.

  34. Kitao T, Hirata K, Shima K, Hayashi T, Sekizawa M, Takei T, et al. Reproducibility and uptake time dependency of volume-based parameters on FDG-PET for lung cancer. BMC Cancer. 2016;16:576.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Momose.

Ethics declarations

Conflict of interest

None.

Ethical standards

All procedures performed involving human participants were in accordance with the ethical standards of the institutional research committee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataoka, S., Momose, M., Fukushima, K. et al. Regional myocardial damage and active inflammation in patients with cardiac sarcoidosis detected by non-invasive multi-modal imaging. Ann Nucl Med 31, 135–143 (2017). https://doi.org/10.1007/s12149-016-1136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1136-1

Keywords

Navigation