Skip to main content

Advertisement

Log in

A case report of image-based dosimetry of bone metastases with Alpharadin (223Ra-dichloride) therapy: inter-fraction variability of absorbed dose and follow-up

  • Case Report
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A 70-year-old man affected by bone metastases from castration resistant prostate cancer underwent Alpharadin (223Ra-dichloride) therapy (6 administrations of 50 kBq per kg i.v., once every 4 weeks). The inter-fraction variability of the absorbed dose to lesions was evaluated for four injections. Dosimetric assessments were performed following the MIRD approach and a recently published methodology. The mean absorbed dose and standard deviation for 4 lesions [mean (σ %)] were: 434 mGy (15 %) and 516 mGy (21 %) for the right and left humeral head, 1205 mGy (14 %) and 781 mGy (8 %) for the right and left glenoid. The estimated total absorbed dose after the whole treatment, considering also the relative-biological effectiveness of alpha particles (RBE = 5), yielded a D RBE range of 13–36 Gy. A good correlation between 99mTc and 223Ra uptake was obtained (R 2 = 0.7613). The tumour–non-tumour (TNT) ratio of 8 lesions (those above, plus 4 additional), monitored by six 99mTc-MDP bone scans over a period of about 10 months, evidenced a TNT reduction in two lesions (−42 and −48 %), but in most lesions the TNT remained fairly constant, evidencing that 223Ra-dichloride therapy tends to prevent further progression of osseous disease, leading to chronicity of the metastatic status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, Westlin JE, et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11:4451–9.

    Article  CAS  PubMed  Google Scholar 

  2. Nilsson S, Franzen L, Parker C, Tyrrell C, Blom R, Tennvall J, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.

    Article  CAS  PubMed  Google Scholar 

  3. Parker CC, Pascoe S, Chodacki A, O’Sullivan JM, Germá JR, O’Bryan-Tear CG, et al. A randomized, double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol. 2013;63:189–97.

    Article  CAS  PubMed  Google Scholar 

  4. Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, part 1: α therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.

    Article  CAS  PubMed  Google Scholar 

  5. Nilsson S, Strang P, Aksnes AK, Franzèn L, Olivier P, Pecking A, et al. A randomized, dose–response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur J Cancer. 2012;48:678–86.

    Article  CAS  PubMed  Google Scholar 

  6. Larsen RH, Saxtorph H, Skydsgaard M, Borrebaek J, Jonasdottir TJ, Bruland OS, et al. Radiotoxicity of the α-emitting bone-seeker Ra-223 injected intravenously into mice: histology, clinical chemistry and hematology. In Vivo. 2006;20:325–31.

    CAS  PubMed  Google Scholar 

  7. Jadvar H, Quinn DI. Targeted α-particle therapy of bone metastases in prostate cancer. Clin Nucl Med. 2013;38:966–71.

    PubMed  Google Scholar 

  8. Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH. Significant antitumor effect from bone-seeking, α-particle-emitting Ra-223 demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62:3120–5.

    CAS  PubMed  Google Scholar 

  9. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  10. Carrasquillo JA, O’Donoghue JA, Pandit-Taskar N, Humm JL, Rathkopf DE, Slovin SF, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:1384–93.

    Article  CAS  PubMed  Google Scholar 

  11. Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun. 2012;33:726–32.

    Article  CAS  PubMed  Google Scholar 

  12. Chittenden S, Hindorf C, Parker CC, Lewington VJ, Pratt BE, Johnson B, et al. Phase 1, open-label study of the biodistribution, pharmacokinetics and dosimetry of Radium-223 dichloride (223Ra dichloride) in patients with hormone refractory prostate cancer and skeletal metastases. J Nucl Med. 2015;56:1304–9.

    Article  PubMed  Google Scholar 

  13. Pacilio M, Ventroni G, De Vincentis G, Cassano B, Pellegrini R, Di Castro E, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride. Eur J Nucl Med Mol Imaging. 2015. doi:10.1007/s00259-015-3150-2.

    PubMed  Google Scholar 

  14. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. Mird Pamphlet No. 16 techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37s–61s.

    CAS  PubMed  Google Scholar 

  15. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. Revised. New York, NY: The Society of Nuclear Medicine; 1991.

    Google Scholar 

  16. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:649–55.

    Article  CAS  PubMed  Google Scholar 

  17. Buijs WC, Siegel JA, Boerman OC, Corstens FH. Absolute organ activity estimated by five different methods of background correction. J Nucl Med. 1998;39:2167–72.

    CAS  PubMed  Google Scholar 

  18. Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources Technical Report ORNL/TM-8381/V1, Oak Ridge National Laboratory, TN, USA; 1987.

  19. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  20. Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51:311–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The patient enrolled in this research was participating in a multicenter study (protocol 88-8223/16216) sponsored by Bayer HealthCare Pharmaceuticals, entitled “Radium-223 chloride in treatment of CRPC patients with bone metastasis”. The authors declare that this study complies with the current law of the country (Italy) where it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Pacilio.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacilio, M., Ventroni, G., Cassano, B. et al. A case report of image-based dosimetry of bone metastases with Alpharadin (223Ra-dichloride) therapy: inter-fraction variability of absorbed dose and follow-up. Ann Nucl Med 30, 163–168 (2016). https://doi.org/10.1007/s12149-015-1044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-015-1044-9

Keywords

Navigation