Skip to main content

Advertisement

Log in

Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV).

Methods

The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned.

Results

Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image.

Conclusion

We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50:R45–61.

    Article  CAS  PubMed  Google Scholar 

  2. Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49:1651–63.

    Article  PubMed  Google Scholar 

  3. Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EK. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev. 2011;63:547–54.

    Article  CAS  PubMed  Google Scholar 

  4. Clinthorne NH, Meng LJ. Small Animal SPECT, SPECT/CT, and SPECT/MRI. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS, editors. Molecular imaging, principles and practice. Shelton: People’s Medical Publishing House; 2010. p. 76–98.

    Google Scholar 

  5. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. Int J Mol Imaging. 2011;2011:796025.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Deleye S, Van Holen R, Verhaeghe J, Vandenberghe S, Stroobants S, Staelens S. Performance evaluation of small-animal multipinhole muSPECT scanners for mouse imaging. Eur J Nucl Med Mol Imaging. 2013;40:744–58.

    Article  CAS  PubMed  Google Scholar 

  7. van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji C, et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med. 2009;50:599–605.

    Article  PubMed  Google Scholar 

  8. Higaki Y, Kobayashi M, Uehara T, Hanaoka H, Arano Y, Kawai K. Appropriate collimators in a small animal SPECT scanner with CZT detector. Ann Nucl Med. 2013;27:271–8.

    Article  PubMed  Google Scholar 

  9. Cascini GL, Niccoli Asabella A, Notaristefano A, Restuccia A, Ferrari C, Rubini D, et al. 124Iodine: a longer-life positron emitter isotope-new opportunities in molecular imaging. Biomed Res Int. 2014;. doi:10.1155/2014/672094.

    Google Scholar 

  10. Shiraishi Y, Gotoh K, Towata T, Shimasaki T, Suzu S, Kojima A, et al. Therapeutic effects of gamma-irradiation in a primary effusion lymphoma mouse model. Exp Ther Med. 2010;1:79–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Li CC, Chi JL, Ma Y, Li JH, Xia CQ, Li L, et al. Interventional therapy for human breast cancer in nude mice with 131I gelatin microspheres (131I-GMSs) following intratumoral injection. Radiat Oncol. 2014;. doi:10.1186/1748-717x-9-144.

    Google Scholar 

  12. Kocher DC. Radioactive decay data tables: a handbook of decay data for application to radiation dosimetry and radiological assessment. National Technical Information Service, U.S. Department of Energy. DOE/TIC-11026. Springfield, VA; 1981. pp. 133–134.

  13. Tanaka M, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for 123I imaging. Phys Med Biol. 2007;52:4409–25.

    Article  CAS  PubMed  Google Scholar 

  14. Mejia J, Galvis-Alonso OY, Castro AA, Braga J, Leite JP, Simoes MV. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging. Braz J Med Biol Res. 2010;43:1160–6.

    Article  CAS  PubMed  Google Scholar 

  15. Aguiar P, Silva-Rodriguez J, Herranz M, Ruibal A. Preliminary experience with small animal SPECT imaging on clinical gamma cameras. Biomed Res Int. 2014;. doi:10.1155/2014/369509.

    PubMed Central  PubMed  Google Scholar 

  16. Silva-Rodriguez J, Cortes J, Pardo-Montero J, Perez-Fentes D, Herranz M, Ruibal A, et al. In vivo quantification of renal function in mice using clinical gamma cameras. Phys Med. 2015;31:242–7.

    Article  PubMed  Google Scholar 

  17. Wagenaar DJ, Zhang J, Kazules T, Vandehei T, Bolle E, Chowdhury S, et al. In vivo dual-isotope SPECT imaging with improved energy resolution. IEEE Nuclear Sci Symp Conf Record. 2006;6:3821–6.

    Google Scholar 

  18. Wong WHG, Uribe J. Principles of single photon emission computed tomography and positron emission tomography. In: Edmund E, Kim DJY, editors. Targeted molecular imaging in oncology. New York: Springer; 2001. p. 19–29.

    Chapter  Google Scholar 

  19. Tan HK, Wassenaar RW, Zeng W. Collimator selection, acquisition speed, and visual assessment of 131I-tositumomab biodistribution in a phantom model. J Nucl Med Technol. 2006;34:224–7.

    CAS  PubMed  Google Scholar 

  20. Mah E, Spicer KM. Comparison of medium- and high-energy collimators for 131I-tositumomab dosimetry. J Nucl Med Technol. 2007;35:148–53.

    Article  PubMed  Google Scholar 

  21. Kobayashi M, Wakabayashi H, Kayano D, et al. Application of a medium-energy collimator for I-131 imaging after ablation treatment of differentiated thyroid cancer. Ann Nucl Med. 2014;28:551–8.

    Article  CAS  PubMed  Google Scholar 

  22. Soundararajan A, Bao A, Phillips WT, Perez R 3rd, Goins BA. 186Re-Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol. 2009;36:515–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Van Holen R, Staelens S, Vandenberghe S. SPECT imaging of high energy isotopes and isotopes with high energy contaminants with rotating slat collimators. Med Phys. 2009;36:4257–67.

    Article  PubMed  Google Scholar 

  24. Mancini M, Vergara E, Salvatore G, Greco A, Troncone G, Affuso A, et al. Morphological ultrasound microimaging of thyroid in living mice. Endocrinology. 2009;150:4810–5.

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Ren G, Miao Z, Zhang X, Tang X, Han P, et al. Molecular optical imaging with radioactive probes. PLoS ONE. 2010;5(3):e9470.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tai JH, Nguyen B, Wells RG, Kovacs MS, McGirr R, Prato FS, et al. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT. J Nucl Med. 2008;49:94–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kojima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojima, A., Gotoh, K., Shimamoto, M. et al. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection. Ann Nucl Med 30, 169–175 (2016). https://doi.org/10.1007/s12149-015-1028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-015-1028-9

Keywords

Navigation