Skip to main content

Advertisement

Log in

A novel respiratory gating method for oncologic positron emission tomography based on bioimpedance approach

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Respiratory motion causes loss of image quality and inaccuracy of quantification in oncologic positron emission tomography (PET) imaging. This study introduces a bioimpedance-based gating method for compensation of respiratory motion artefacts.

Methods

The bioimpedance-based respiratory gating method was studied parallel to a clinically used respiratory gating method [Real-time Position Management by Varian Medical Systems] in 4D PET/CT acquisition of 9 oncologic patients. The quantitative analysis consisted of the evaluation of tumour SUVpeak, SUVmax and volume. Additionally, target-to-background ratios as well as motion in cranial–caudal and anterior–posterior directions were measured. The evaluation was performed with amplitude- and time-based gating using averaged attenuation correction maps.

Results

Bioimpedance gating resulted in 17.7–18.9 % increase in mean SUVpeak and 20.0–21.4 % decrease in mean volume compared to non-gated images. The maximum motion measured from the bioimpedance-gated images was 19 mm in cranial–caudal direction and 9 mm in anterior–posterior direction.

Conclusions

Bioimpedance-based respiratory gating compensates the adverse effects of motion in oncologic PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nehmeh SA, Erdi YU, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images in lung cancer. J Nucl Med. 2002;43:876–81.

    PubMed  Google Scholar 

  2. Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54:7345–62.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Dawood M, Büther F, Lang N, Schober O, Schäfers KP. Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes. Med Phys. 2007;34:3067–76.

    Article  PubMed  Google Scholar 

  4. Bundschuh RA, Martinéz-Moeller A, Essler M, Martinéz J-M, Nekolla SG, Ziegler SI, et al. Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode PET data: a feasibility study. J Nucl Med. 2007;48:758–63.

    Article  PubMed  Google Scholar 

  5. Chang G, Chang T, Clark JW Jr, Mawlawi OR. Design and performance of a respiratory amplitude gating device for PET/CT imaging. Med Phys. 2010;37:1408–12.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wolthaus JWH, van Herk M, Muller SH, Belderlos JSA, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol. 2005;50:1569–83.

    Article  CAS  PubMed  Google Scholar 

  7. Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009;54:1935–50.

    Article  PubMed  Google Scholar 

  8. Büther F, Ernst I, Dawood M, Kraxner P, Schäfers M, Schober O, et al. Detection of respiratory tumour motion using intrinsic list-mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging. 2010;37:2315–27.

    Article  PubMed  Google Scholar 

  9. Fin L, Daouk J, Morvan J, Bailly P, El Esper I, Saidi L, et al. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions. Eur J Nucl Med Mol Imaging. 2008;35:1971–80.

    Article  PubMed  Google Scholar 

  10. Büther F, Ernst I, Hamill J, Eich HT, Schober O, Schäfers M, et al. External radioactive markers for PET data-driven respiratory gating in positron emission tomography. Eur J Nucl Med Mol Imaging. 2012;40:602–14.

    Article  PubMed  Google Scholar 

  11. Lamare F, Ledesma Carbayo MJ, Cresson T, Kontaxakis G, Santos A, Cheze Le Rest C, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol. 2007;52:5187–204.

    Article  CAS  PubMed  Google Scholar 

  12. Bundschuh RA, Martinéz-Moeller A, Essler M, Nekolla SG, Ziegler SI, Schwaiger M. Local motion correction for lung tumours in PET/CT—first results. Eur J Nucl Med Mol Imaging. 2008;35:1981–8.

    Article  PubMed  Google Scholar 

  13. Nehmeh SA, Erdi YU, Meirelles GSP, Squire O, Larson SM, et al. Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med. 2007;48:22–6.

    PubMed  Google Scholar 

  14. Kawano T, Ohtake E, Inoue T. Deep-inspiration breath-hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med. 2008;49:1223–31.

    Article  PubMed  Google Scholar 

  15. Koch N, Liu HH, Starkschall G, Jacobson M, Forster K, Liao Z, et al. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: part I—correlating internal lung motion with skin fiducial motion. Int J Radiation Oncology Biol Phys. 2004;60:1459–72.

    Article  Google Scholar 

  16. Didierlaurent D, Ribes S, Batatia H, Jaudet C, Dierickx LO, Zerdoud S, et al. The retrospective binning method improves the consistency of phase binning in respiratory-gated PET/CT. Phys Med Biol. 2012;57:7829–41.

    Article  CAS  PubMed  Google Scholar 

  17. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. 2008;38:167–76.

    Article  PubMed  Google Scholar 

  18. Houtveen JH, Groot PF, de Geus EJ. Validation of the thoracic impedance derived respiratory signal using multilevel analysis. Int J Psychophysiol. 2006;59:97–106.

    Article  PubMed  Google Scholar 

  19. Koivumäki T, Kuikka JT, Vauhkonen M, Hakulinen MA. Bioimpedance-based measurement method for simultaneous acquisition of respiratory and cardiac gating signals. Physiol Meas. 2012;33:1323–34.

    Article  PubMed  Google Scholar 

  20. Baker LE. Applications of the impedance technique to the respiratory system. IEEE Eng Med Biol Mag. 1989;8:50–2.

    Article  CAS  PubMed  Google Scholar 

  21. Cho K, Kumiata S, Okada S, Kumazaki T. Development of respiratory gated myocardial SPECT system. J Nucl Cardiol. 1999;6:20–8.

    Article  CAS  PubMed  Google Scholar 

  22. Conwell R, Bai C, Kindem J, Babla H, Solis D, De Los Santos R, et al. An operator-passive thoracic impedance approach for respiratory motion gating in myocardial perfusion SPECT. IEEE Nucl Sci Symp Conf Rec. 2011;23–29:3888–93.

    Google Scholar 

  23. Koivumäki T, Vauhkonen M, Kuikka JT, Hakulinen MA. Optimizing bioimpedance measurement configuration for dual-gated nuclear medicine imaging: a sensitivity study. Med Biol Eng Comput. 2011;49:783–91.

    Article  PubMed  Google Scholar 

  24. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Prec and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:822–34.

    Article  PubMed  Google Scholar 

  26. Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med. 2012;53:1041–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Daouk J, Fin L, Bailly P, Meyer ME. AW-OSEM parameter optimization for selected events related to the breath-hold CT position in respiratory-gated PET acquisitions. In: IEEE International Symposium on Biomedical Imaging Conference Record 2008. pp. 1323–1326.

  28. Teo B-K, Saboury B, Munbodh R, Scheuermann J, Torigian DA, Zaidi H, et al. The effect of breathing irregularities on quantitative accuracy of respiratory-gated PET/CT. Med Phys. 2012;39:7390–7.

    Article  PubMed  Google Scholar 

  29. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004;23:1430–53.

    Article  PubMed  Google Scholar 

  30. Lee P, Kupelian P, Czernin J, Ghosh P. Frontiers in Oncology. 2012;2:71.

    PubMed Central  PubMed  Google Scholar 

  31. Riou O, Serrano B, Azria D, Paulmier B, Villeneuve R, Fenoglietto P, et al. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study. Radiat Oncol. 2014;9:127.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was conducted within the Finnish Center of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Akademi University. The authors thank GE Healthcare for providing offline reconstruction for gating (RGT software) according to a research agreement between GE Healthcare and Turku PET Centre. Jarmo Teuho worked as an employee of GE Healthcare at a time when majority of work was completed as a part of research collaboration. This work was funded by Kuopio University Hospital (EVO, project 5031345), Academy of Finland (International Doctoral Programme in Biomedical Engineering and Medical Physics), Oskar Öflunds Stiftelse, Instrumentarium Science Foundation and Finnish Cultural Foundation North Savo Regional Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomas Koivumäki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koivumäki, T., Teuho, J., Teräs, M. et al. A novel respiratory gating method for oncologic positron emission tomography based on bioimpedance approach. Ann Nucl Med 29, 351–358 (2015). https://doi.org/10.1007/s12149-015-0953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-015-0953-y

Keywords

Navigation