Annals of Nuclear Medicine

, Volume 28, Issue 9, pp 880–890 | Cite as

Synthesis, characterization and in vivo evaluation of [62Zn]–benzo-δ-sultam complex as a possible pet imaging agent

  • Mehdi Ghandi
  • Shahzad Feizi
  • Farhood Ziaie
  • Yousef FazaeliEmail author
  • Behrooz Notash
Original Article



The development of a new tracer based on the cyclic sulfonamides (sultams) was investigated.


3-(Methoxy-phenyl-methyl)-1,6-dimethyl-1H benzo[c][1,2] thiazine 2,2-dioxide (benzo-δ-sultam) was synthesized and characterized by elemental analysis, FT-IR spectroscopy and single crystal X-ray structure determination. The prepared cyclic sulfonamide was labeled with non-commercial 62Zn radioisotope for fast in vivo targeting and Coincidence imaging purposes (radiochemical purity 97 % ITLC, 96 % HPLC, specific activity 20–23 GBq/mmol). In vivo biodistribution of the final complex was investigated in Sprague Dawley® rats bearing fibro sarcoma tumor after 2, 4 and 8 h post injection and compared with free Zn+2 cation.


Using instant paper chromatography method, the physicochemical properties of labeled compounds were found sufficiently stable in organic phases, e.g. a human serum, to be reliably used in bioapplications.


The complex exhibited a rapid as well as high tumor uptake (tumor to blood ratio 4.38 and tumor to muscle ratio 9.63) resulting in an efficient tumor targeting agent.


62Zn production Benzo-δ-sultam Coincidence imaging Bio distribution 


Conflict of interest

The authors report no conflicts of interest in this work.


  1. 1.
    Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996;23:957.PubMedCrossRefGoogle Scholar
  2. 2.
    Qaim SM. Use of cyclotrons in medicine. Radiat Phys Chem. 2004;71:917.CrossRefGoogle Scholar
  3. 3.
    Piel H, Qai SM, Stöcklin G. Excitation functions of (p, xn)-reactions on natNi and highly enriched 62Ni: possibility of production of medically important radioisotope 62Cu at a small cyclotron. Radiochim Acta. 1992;57:1–5.Google Scholar
  4. 4.
    Szelecsenyi F, Suzuki K, Kovacs Z, Takei M, Okada K. Production possibility of 60, 61, 62 Cu radioisotopes by alpha induced reactions on cobalt for PET studies. Nucl Instrum Methods B. 2002;187:153–63.CrossRefGoogle Scholar
  5. 5.
    Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med. 1997;38:1155–60.PubMedGoogle Scholar
  6. 6.
    Takahashi N, Fujibayashi Y, Yonekura Y. Evaluation of 62Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med. 2000;14:323–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Jalilian AR, Fateh B, Ghergherehchi M, Karimian A. Development of [62Zn] bleomycin as a possible PET tracer. Nukleonika. 2005;50:143–8.Google Scholar
  8. 8.
    Fujibayashi Y, Saji H, Yomoda I, Kawai K, Horiuchi K, Adachi H, Torizuka K, Yokoyama A. 62Zn-EDDA: a radiopharmaceutical for pancreatic functional diagnosis. Int J Nucl Med Biol. 1986;12:439–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Aghanejad A, Jalilian AR, Fazaeli Y, Beiki D, Fateh B, Ali Khalaj. Radiosynthesis and biodistribution studies of [62Zn/62Cu]–plerixafor complex as a novel in vivo PET generator for chemokine receptor imaging. J Radioanal Nucl Chem. 2014;299:1635–44.CrossRefGoogle Scholar
  10. 10.
    Tamura M, Matsui H, Hirohara S, Kakiuchi K, Tanihara M, et al. Selective accumulation of [62Zn]-labeled glycoconjugated porphyrins as multi-functional positron emission tomography tracers in cancer cells. Bioorg Med Chem. 2014;22:2563–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Fujibayashi Y, Matsumoto K, Yonekura Y, Konishi J, Yokoyama A. A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals. J Nucl Med. 1989;30(11):1838–42.PubMedGoogle Scholar
  12. 12.
    Lacy JL, Chien SC, Lim JK, Mathias CJ, Green MA. Modular automated Zn-62/Cu-62 PET radiopharmaceutical generator. J Nucl Med. 1995;36:49.Google Scholar
  13. 13.
    Matsumoto K, Fujibayashi Y, Yonekura Y. Application of the new zinc-62/copper-62 generator: An effective labeling method for Cu-PTSM. Nucl Med Biol. 1992;19(1):39–44.Google Scholar
  14. 14.
    Robinson JGD, Zielinski FW, Lee AW. The Zinc-62/Copper-62 generator: a convenient source of Copper-62 for radiopharmaceuticals. Appl Radiat Isot. 1980;31(2):111–6.CrossRefGoogle Scholar
  15. 15.
    Smits RA, Adami M, Istyastono EP, Zuiderveld OP, van Dam CME, de Kanter FJJ, Jongejan A, Coruzzi G, Leurs R, de Esch IJP. Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H4 receptor inverse agonists. J Med Chem. 2010;53(6):2390–400.PubMedCrossRefGoogle Scholar
  16. 16.
    Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002;45:888–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Inagaki M, Tsuri T, Jyoyama H, Ono T, Yamada K, Kobayashi M, Hori Y, Arimura A, Yasui K, Ohno K, Kakudo S, Koizumi K, Suzuki R, Kato M, Kawai S, Matsumoto S. Novel antiarthritic agents with 1,2-isothiazolidine-1,1-dioxide (γ-sultam) skeleton: cytokine suppressive dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. J Med Chem. 2000;43(10):2040–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Cherney RJ, Dayton RM, Meyer T, Hardman KD, Liu RQ, Covington MB, Qian M, Wasserman ZR, Christ DD, Trzaskos JM, Newton RC, Decicco CP. Sultam hydroxamates as novel matrix metalloproteinase inhibitors. J Med Chem. 2004;47(12):2981–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Ali A, Reddy GSKK, Cao H, Anjum SG, Nalam MNL, Schiffer CA, Rana TM. Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-Aryl-oxazolidinone-5-carboxamides as novel P2 ligands. J Med Chem. 2006;49(25):7342–56.PubMedCrossRefGoogle Scholar
  20. 20.
    McKeown SC, Hall A, Blunt R, Brown SH, Chessell IP, Chowdhury A, Giblin GMP, Healy MP, Johnson MR, Lorthioir O, Michel AD, Naylor A, Lewell X, Roman S, Watson SP, Winchester WJ, Wilson RJ. Identification of novel glycine sulfonamide antagonists for the EP1 receptor. Bioorg Med Chem Lett. 2007;17(6):1750–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Council Biological. Guidelines on the use of living animals in scientific investigations. 2nd ed. London: Biological Council; 1987.Google Scholar
  22. 22.
    Weisberg AM. Gold plating. 9th ed. USA: ASM International; 1990. p. 247.Google Scholar
  23. 23.
    The crystallographic information file has been deposited with the Cambridge Data Centre, CCDC 974372.Google Scholar
  24. 24.
    X-STEP32 Version 1.07b, Crystallographic Package; Stoe & Cie GmbH: Darmstadt, Germany, 2000.Google Scholar
  25. 25.
    Aboudzadeh M, Fazaeli Y, Khodaverdi H, Afarideh H. Production, nano-purification, radiolabeling and biodistribution study of [140Nd] 5,10,15,20-tetraphenylporphyrin complex as a possible imaging agent. J Radioanal Nucl Chem. 2013;295:105.CrossRefGoogle Scholar
  26. 26.
    Fukumura T, Okada K, Suzuki H, Nakao R, Mukai K, Szelecsenyi F, Kovacs Z, Suzuki K. An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl Med Biol. 2006;33(6):821–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Fazaeli Y, Amini MM, Najafi E, Mohajerani E, Janghouri M, Jalilian A, Ng SW. Synthesis and characterization of 8-hydroxyquinoline complexes of tin (IV) and their application in organic light emitting diode. J Fluoresc. 2012;22(5):1263–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Reference charged particle cross-section database for medical radioisotope production, Diagnostic radio isotopes and monitor reactions IAEA-TECDOC-1211, IAEA, Vienna, Austria, 2001.Google Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2014

Authors and Affiliations

  • Mehdi Ghandi
    • 1
  • Shahzad Feizi
    • 1
    • 2
  • Farhood Ziaie
    • 2
  • Yousef Fazaeli
    • 2
    Email author
  • Behrooz Notash
    • 3
  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Nuclear Science and Technology Research Institute (NSTRI)KarajIran
  3. 3.Department of ChemistryShahid Beheshti University, G. C. EvinTehranIran

Personalised recommendations