Advertisement

Annals of Nuclear Medicine

, Volume 28, Issue 6, pp 559–570 | Cite as

Derivation of attenuation map for attenuation correction of PET data in the presence of nanoparticulate contrast agents using spectral CT imaging

  • Hossein Ghadiri
  • Mohammad Bagher Shiran
  • Hamid Soltanian-Zadeh
  • Arman Rahmim
  • Habib Zaidi
  • Mohammad Reza AyEmail author
Original Article

Abstract

Objective

Uptake value in quantitative PET imaging is biased due to the presence of CT contrast agents when using CT-based attenuation correction. Our aim was to examine spectral CT imaging to suppress inaccuracy of 511 keV attenuation map in the presence of multiple nanoparticulate contrast agents.

Methods

Using a simulation study we examined an image-based K-edge ratio method, in which two images acquired from energy windows located above and below the K-edge energy are divided by one another, to identify the exact location of all contrast agents. Multiple computerized phantom studies were conducted using a variety of NP contrast agents with different concentrations. The performance of the proposed methodology was compared to conventional single-kVp and dual-kVp methods using wide range of contrast agents with varying concentrations.

Results

The results demonstrate that both single-kVp and dual-kVp energy mapping approaches produce inaccurate attenuation maps at 511 keV in the presence of multiple simultaneous contrast agents. In contrast, the proposed method is capable of handling multiple simultaneous contrast agents, thus allowing suppression of 511 keV attenuation map inaccuracy.

Conclusion

Attenuation map produced by spectral CT clearly outperforms conventional single-kVp and dual-kVp approaches in the generation of accurate attenuation maps in the presence of multiple contrast agents.

Keywords

PET/CT Nanoparticulate contrast agents K-edge imaging Multi-energy spectral CT 

Notes

Acknowledgments

This work was supported by Tehran University of Medical Sciences under Grant 21342 and the Swiss National Science Foundation under grant SNSF 31003A-149957.

References

  1. 1.
    Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S–20S.PubMedCrossRefGoogle Scholar
  2. 2.
    Abdoli M, Dierckx RA, Zaidi H. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging. Med Phys. 2012;39(6):3343–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Qu M, Ehman E, Fletcher JG, Huprich JE, Hara AK, Silva AC, et al. Toward biphasic computed tomography (CT) enteric contrast: material classification of luminal bismuth and mural iodine in a small-bowel phantom using dual-energy CT. J Comput Assist Tomogr. 2012;36(5):554–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Aviv H, Bartling S, Grinberg I, Margel S. Synthesis and characterization of Bi2O3/HSA core-shell nanoparticles for X-ray imaging applications. J Biomed Mater Res B Appl Biomater. 2013;101(1):131–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomed. 2011;6:2859–64.Google Scholar
  7. 7.
    Clark DP, Ghaghada K, Moding EJ, Kirsch DG, Badea CT. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT. Phys Med Biol. 2013;58(6):1683–704.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Axelsson O. Inventor contrast agents comprising tungsten-containing cores. European patent EP1893243. March 2008.Google Scholar
  10. 10.
    Torres AS, Bonitatibus PJ Jr, Colborn RE, Goddard GD, FitzGerald PF, Lee BD, et al. Biological performance of a size-fractionated core-shell tantalum oxide nanoparticle x-ray contrast agent. Invest Radiol. 2012;47(10):578–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Dekrafft KE, Boyle WS, Burk LM, Zhou OZ, Lin W. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J Mater Chem. 2012;22(35):18139–44.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, et al. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc. 2011;133(14):5508–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhou J, Zhu X, Chen M, Sun Y, Li F. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials. 2012;33(26):6201–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Pan D, Schirra CO, Senpan A, Schmieder AH, Stacy AJ, Roessl E, et al. An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano. 2012;6(4):3364–70.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Liu Z, Li Z, Liu J, Gu S, Yuan Q, Ren J, et al. Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials. 2012;33(28):6748–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashokan A, Menon D, Nair S, Koyakutty M. A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials. 2010;31(9):2606–16.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res. 2012;45(10):1817–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Bulte JW. Science to practice: can CT be performed for multicolor molecular imaging? Radiology. 2010;256(3):675–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Ay MR, Zaidi H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging. 2006;33(11):1301–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Heusner TA, Kuehl H, Veit-Haibach P, Hahn S, Boy C, Forsting M, et al. Highly iodinated intravenous contrast material for PET/CT––a feasibility study. Rofo. 2008;180(8):740–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Kropil P, Budach W, Bolke E, Gerber PA, Zinnmann F, Hautzel H, et al. Pitfalls in radiation oncology. “Myocardial metastasis” in PET–CT after palliative radiation treatment of the left 5th rib. Strahlenther Onkol. 2012;188(4):359–62.PubMedCrossRefGoogle Scholar
  22. 22.
    McKeown C, Dempsey MF, Gillen G, Paterson C. Quantitative analysis shows that contrast medium in positron emission tomography/computed tomography may cause significant artefacts. Nucl Med Commun. 2012;33(8):864–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmadian A, Ay MR, Bidgoli JH, Sarkar S, Zaidi H. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm. Eur J Nucl Med Mol Imaging. 2008;35(10):1812–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Nehmeh SA, Erdi YE, Kalaigian H, Kolbert KS, Pan T, Yeung H, et al. Correction for oral contrast artifacts in CT attenuation-corrected PET images obtained by combined PET/CT. J Nucl Med. 2003;44(12):1940–4.PubMedGoogle Scholar
  25. 25.
    Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44(2):291–315.PubMedGoogle Scholar
  26. 26.
    Kinahan PE, Alessio AM, Fessler JA. Dual energy CT attenuation correction methods for quantitative assessment of response to cancer therapy with PET/CT imaging. Technol Cancer Res Treat. 2006;5(4):319–27.PubMedGoogle Scholar
  27. 27.
    Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256–68.PubMedCrossRefGoogle Scholar
  30. 30.
    Zou Y, Silver MD, editors. Analysis of fast kV-switching in dual energy CT using a pre-reconstruction decomposition technique. Proceedings of the SPIE medical imaging: physics of medical imaging, San Diego, CA; 2008.Google Scholar
  31. 31.
    Carmi R, Naveh G, Altman A, editors. Material separation with dual-layer CT. IEEE nuclear science symposium conference record. Wyndham El Conquistador Resort, Puerto Rico: IEEE; Oct 2005. pp 23–29.Google Scholar
  32. 32.
    Roessl E, Cormode D, Brendel B, Jürgen Engel K, Martens G, Thran A, et al. Preclinical spectral computed tomography of gold nano-particles. Nucl Instrum Method A. 2011;648:S259–64.CrossRefGoogle Scholar
  33. 33.
    Koenig T, Schulze J, Zuber M, Rink K, Butzer J, Hamann E, et al. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors. Phys Med Biol. 2012;57(21):6743–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Le HQ, Molloi S. Segmentation and quantification of materials with energy discriminating computed tomography: a phantom study. Med Phys. 2011;38(1):228–37.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Le Huy Q, Molloi S. Least squares parameter estimation methods for material decomposition with energy discriminating detectors. Med Phys. 2011;38(1):245–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52(15):4679–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt TG, Pektas F. Region-of-interest material decomposition from truncated energy-resolved CT. Med Phys. 2011;38(10):5657–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang X, Meier D, Taguchi K, Wagenaar DJ, Patt BE, Frey EC. Material separation in x-ray CT with energy resolved photon-counting detectors. Med Phys. 2011;38(3):1534–46.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Lee SW, Choi YN, Cho HM, Lee YJ, Ryu HJ, Kim HJ. A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector. Phys Med Biol. 2012;57(15):4931–49.PubMedCrossRefGoogle Scholar
  41. 41.
    He P, Wei B, Cong W, Wang G. Optimization of K-edge imaging with spectral CT. Med Phys. 2012;39:6572.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Leng S, Yu L, Wang J, Fletcher JG, Mistretta CA, McCollough CH. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys. 2011;38(9):4946–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Herrmann C, Engel KJ, Wiegert J. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers. Phys Med Biol. 2010;55(24):7697–713.PubMedCrossRefGoogle Scholar
  44. 44.
    Walsh MF, Opie AMT, Ronaldson JP, Doesburg RMN, Nik SJ, Mohr JL, et al. First CT using Medipix3 and the MARS-CT-3 spectral scanner. J Instrum. 2011;6:C01095.Google Scholar
  45. 45.
    Riederer SJ, Mistretta CA. Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys. 1977;4(6):474–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Ghadiri H, Ay MR, Shiran MB, Soltanian-Zadeh H, Zaidi H. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging. Br J Radiol. 1029;2013(86):20130308.Google Scholar
  47. 47.
    Cranley K, Gilmore B, Fogarty G, Desponds L, Sutton D. Catalogue of diagnostic x-ray spectra and other data. IPEM report 78. 1997.Google Scholar
  48. 48.
    Ghadiri H, Shiran MB, Soltanian-Zadeh H, Rahmim A, Ay MR. A fast and hardware-mimicking analytic CT simulator. IEEE nuclear science symposium and medical imaging conferenc, Korea; 2013.Google Scholar
  49. 49.
    Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom––a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004;71(3–4):653–4.CrossRefGoogle Scholar
  50. 50.
    Abella M, Alessio AM, Mankoff DA, MacDonald LR, Vaquero JJ, Desco M, et al. Accuracy of CT-based attenuation correction in PET/CT bone imaging. Phys Med Biol. 2012;57(9):2477–90.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lonn AHR. Evaluation of method to minimize the effect of X-ray contrast in PET-CT attenuation correction. IEEE nuclear science symposium, conference record; 2004. pp. 2220–21.Google Scholar
  52. 52.
    Karlo C, Lauber A, Gotti RP, Baumuller S, Stolzmann P, Scheffel H, et al. Dual-energy CT with tin filter technology for the discrimination of renal lesion proxies containing blood, protein, and contrast-agent. An experimental phantom study. Eur Radiol. 2011;21(2):385–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Rehfeld NS, Heismann BJ, Kupferschlager J, Aschoff P, Christ G, Pfannenberg AC, et al. Single and dual energy attenuation correction in PET/CT in the presence of iodine based contrast agents. Med Phys. 2008;35(5):1959–69.PubMedCrossRefGoogle Scholar
  54. 54.
    Kadkhodayan S, Shahriari S, Treglia G, Yousefi Z, Sadeghi R. Accuracy of 18-F-FDG PET imaging in the follow up of endometrial cancer patients: systematic review and meta-analysis of the literature. Gynecol Oncol. 2013;128(2):397–404.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SD, Kim SH, Kim YK, Kim C, Kim SK, Han SS, et al. (18)F-FDG-PET/CT predicts early tumor recurrence in living donor liver transplantation for hepatocellular carcinoma. Transpl Int. 2013;26(1):50–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography contrast agents: current status and future perspectives. Nanomedicine (Lond). 2012;7(2):257–69.CrossRefGoogle Scholar
  57. 57.
    Procz S, Pichotka M, Lubke J, Hamann E, Ballabriga R, Blaj G, et al. Flatfield correction optimization for energy selective X-ray imaging with Medipix3. IEEE Trans Nucl Sci. 2011;58(6):3182–9.CrossRefGoogle Scholar
  58. 58.
    Singh S, Kalra MK, Do S, Thibault JB, Pien H, Connor OO, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr. 2012;36(3):347–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Deak Z, Grimm JM, Treitl M, Geyer LL, Linsenmaier U, Korner M, et al. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Radiology. 2013;266(1):197–206.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2014

Authors and Affiliations

  • Hossein Ghadiri
    • 1
    • 2
  • Mohammad Bagher Shiran
    • 3
  • Hamid Soltanian-Zadeh
    • 4
    • 5
  • Arman Rahmim
    • 6
  • Habib Zaidi
    • 7
    • 8
    • 9
  • Mohammad Reza Ay
    • 1
    • 2
    Email author
  1. 1.Department of Medical Physics and Biomedical EngineeringTehran University of Medical SciencesTehranIran
  2. 2.Research Center for Molecular and Cellular ImagingTehran University of Medical SciencesTehranIran
  3. 3.Department of Medical PhysicsIran University of Medical SciencesTehranIran
  4. 4.CIPCE, Department of Electrical and Computer EngineeringUniversity of TehranTehranIran
  5. 5.Department of RadiologyHenry Ford Health SystemDetroitUSA
  6. 6.Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  7. 7.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland
  8. 8.Geneva Neuroscience CenterGeneva UniversityGenevaSwitzerland
  9. 9.Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands

Personalised recommendations