Annals of Nuclear Medicine

, Volume 28, Issue 4, pp 393–403 | Cite as

Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology Recommendations

  • Yoshio Ishida
  • Keiichiro YoshinagaEmail author
  • Masao Miyagawa
  • Masao Moroi
  • Chisato Kondoh
  • Keisuke Kiso
  • Shinichiro Kumita


Sarcoidosis is a systemic granulomatous disease that forms epithelioid cell granuloma (accompanied by infiltration of inflammatory cells) without caseous necrosis in organs throughout the body, including the lungs, lymph nodes, skin, eyes, heart, and muscles. Generally there is a good prognosis for spontaneous resolution of sarcoidosis; however, for cardiac-involvement sarcoidosis, the prognosis is extremely poor, and careful management is required. The most common cause of death from sarcoidosis is cardiac complications of the disease, and therefore early detection and treatment of these are very important in the management of cardiac-involvement sarcoidosis.

Guidelines for the diagnosis of cardiac sarcoidosis were first published by Hiraga et al. [ 1] in 1992 (Table  1). These guidelines were modified by the joint committee of the Japan Society of Sarcoidosis and Other Granulomatous Disorders and the Japanese College of Cardiology in 2006 (Table  2) [ 2]. These modified...


Positron Emission Tomography Sarcoidosis Standardize Uptake Value Cardiac Sarcoidosis Myocardial Glucose Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest



  1. 1.
    Hiraga HHM, Iwai K. Guidelines for diagnosis of cardiac sarcoidosis: study report on diffuse pulmonary disease (in Japanese). Tokyo: The Japanese Ministry of Health and Welfare; 1993. p. 2.Google Scholar
  2. 2.
    Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis and Granulomatous Disorders [in Japanese]. 2007;27:89–102.Google Scholar
  3. 3.
    Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Investig. 1987;79(2):359–66.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Yoshinaga K, Tamaki N. Imaging myocardial metabolism. Curr Opin Biotechnol. 2007;18(1):52–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Ohira H, Tsujino I, Yoshinaga K. (1)F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2011;38(9):1773–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.PubMedGoogle Scholar
  8. 8.
    Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol. 2006;13(6):e121–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med. 2003;44(7):1030–6.PubMedGoogle Scholar
  10. 10.
    Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET–CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16(5):801–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18F]fluoro-d-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol. 2002;4(3):232–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng VY, Slomka PJ, Ahlen M, Thomson LE, Waxman AD, Berman DS. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: a randomized controlled trial. J Nucl Cardiol. 2010;17(2):286–91.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50(4):563–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Frayn KN. The glucose-fatty acid cycle: a physiological perspective. Biochem Soc Trans. 2003;31(Pt 6):1115–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190(2):W151–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18(5):926–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Persson E. Lipoprotein lipase, hepatic lipase and plasma lipolytic activity. Effects of heparin and a low molecular weight heparin fragment (Fragmin). Acta medica Scandinavica Supplementum. 1988;724:1–56.Google Scholar
  19. 19.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322(4):223–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992;89(6):1767–74.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26(15):1538–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35(5):933–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Jang IK, Hursting MJ. When heparins promote thrombosis: review of heparin-induced thrombocytopenia. Circulation. 2005;111(20):2671–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Martel N, Lee J, Wells PS. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106(8):2710–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Fdg PET. PET/CT Practice guidelines 2012, September 2012 by Japanese Society of Nuclear Medicine. Kaku Igaku. 2012;49(4):391–401.Google Scholar
  26. 26.
    Hays MT, Segall GM. A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med. 1999;40(8):1358–66.PubMedGoogle Scholar
  27. 27.
    Schwaiger M, Ziegler S, Nekolla SG. PET/CT: challenge for nuclear cardiology. J Nucl Med. 2005;46(10):1664–78.PubMedGoogle Scholar
  28. 28.
    Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45(12):1989–98.PubMedGoogle Scholar
  29. 29.
    Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2010;3(12):1219–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohira H, Tsujino I, Sato T, Yoshinaga K, Manabe O, Oyama N, et al. Early detection of cardiac sarcoid lesions with (18)F-fluoro-2-deoxyglucose positron emission tomography. Intern Med. 2011;50(11):1207–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Tavora F, Cresswell N, Li L, Ripple M, Solomon C, Burke A. Comparison of necropsy findings in patients with sarcoidosis dying suddenly from cardiac sarcoidosis versus dying suddenly from other causes. Am J Cardiol. 2009;104(4):571–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Kandolin R, Lehtonen J, Salmenkivi K, Raisanen-Sokolowski A, Lommi J, Kupari M. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ Heart Fail. 2013;6(1):15–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Banba K, Kusano KF, Nakamura K, Morita H, Ogawa A, Ohtsuka F, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm. 2007;4(10):1292–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol. 2011;4(3):303–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med. 1977;63(1):86–108.PubMedCrossRefGoogle Scholar
  36. 36.
    Tellier P, Paycha F, Antony I, Nitenberg A, Valeyre D, Foult JM, et al. Reversibility by dipyridamole of thallium-201 myocardial scan defects in patients with sarcoidosis. Am J Med. 1988;85(2):189–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Eguchi M, Tsuchihashi K, Hotta D, Hashimoto A, Sasao H, Yuda S, et al. Technetium-99 m sestamibi/tetrofosmin myocardial perfusion scanning in cardiac and noncardiac sarcoidosis. Cardiology. 2000;94(3):193–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bartlett ML, Bacharach SL, Voipio-Pulkki LM, Dilsizian V. Artifactual inhomogeneities in myocardial PET and SPECT scans in normal subjects. J Nucl Med. 1995;36(2):188–95.PubMedGoogle Scholar
  39. 39.
    Gropler RJ, Siegel BA, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med. 1990;31(11):1749–56.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2014

Authors and Affiliations

  • Yoshio Ishida
    • 1
  • Keiichiro Yoshinaga
    • 2
    Email author
  • Masao Miyagawa
    • 3
  • Masao Moroi
    • 4
  • Chisato Kondoh
    • 5
  • Keisuke Kiso
    • 6
  • Shinichiro Kumita
    • 7
  1. 1.Department of CardiologyKaizuka City HospitalKaizukaJapan
  2. 2.Department of Molecular ImagingHokkaido University Graduate School of MedicineSapporoJapan
  3. 3.Department of RadiologyEhime University Graduate School of MedicineMatsuyamaJapan
  4. 4.Department of CardiologyToho University Ohashi HospitalTokyoJapan
  5. 5.Department of Diagnostic RadiologyTokyo Women’s Medical UniversityTokyoJapan
  6. 6.Department of RadiologyNational Cardiovascular Research Centre HospitalSuitaJapan
  7. 7.Department of RadiologyNihon Medical University Graduate School of MedicineSendagiJapan

Personalised recommendations