Skip to main content

Advertisement

Log in

Diagnostic utility of PETCT in thyroid malignancies: an update

  • Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The primary clinical application of 18F FDG PET/CT (18Fluorine labeled flurodeoxyglucose positron emission tomography/computed tomography) in differentiated thyroid carcinoma is in the identification of active disease in thyroglobulin (Tg) positive (>10 ng/ml), whole body iodine scan negative patients. The impact of FDG PET/CT in diagnosis, surveillance, cure, and progression-free survival of differentiated thyroid carcinoma patients remains to be seen. Five main indications of FDG PET/CT in thyroid cancer have been recommended by revised American thyroid association guidelines 2009. This review aims to provide a complete picture of PET imaging in thyroid malignancies and enumerates each indication with literature review. This review also highlights recent advances in targeted molecular imaging. Currently differentiated thyroid cancer is best imaged using conventional single photon emission computed tomography-based radioiodine tracers (123I/131I). Although the utility of FDG PET in well differentiated thyroid cancer patients who are iodine negative but with raised Tg is well established, evidence is emerging on the advantages of FDG PET/CT in other histological types of thyroid malignancy, such as Hurthle cell, medullary, and the anaplastic malignancies. Novel PET radiotracers, such as 124Iodine (124I), 18F-DOPA (3,4-dihydroxy-l-phenylalanine), and 68Ga-DOTA peptides are revolutionizing the way thyroid malignancies are imaged. Newer concepts on targeted molecular imaging and theranostics are ushering in new possibilities for imaging and treating thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koh KBH, Chang KW. Carcinoma in multinodular goitre. Br J Surg. 1992;79:266–7.

    Article  PubMed  CAS  Google Scholar 

  2. Lam KY, Lo CY. Metastatic tumors of the thyroid gland: a study of 79 cases in Chinese patients. Arch Pathol Lab Med. 1998;122(1):37–41.

    PubMed  CAS  Google Scholar 

  3. Kaplan EL, Shukla M, Hara H, Ito K. Surgery of the thyroid. In: DeGroot LJ, editor. Endocrinology. 3rd ed. Philadelphia: WB Saunders; 1995. p. 900–14.

    Google Scholar 

  4. Prendiville S, Burman KD, Ringel MD, Shmookler BM, Deeb ZE, Wolfe K, et al. Tall cell variant: an aggressive form of papillary thyroid carcinoma. Otolaryngol Head Neck Surg. 2000;122(3):352–7.

    PubMed  CAS  Google Scholar 

  5. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.

    Article  PubMed  Google Scholar 

  6. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W. Fluorine-18-FDG and iodine-131 iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468–72.

    PubMed  CAS  Google Scholar 

  7. Khan N, Oriuchi N, Higuchi T, Zhang H, Endo K. PET in the follow-up of differentiated thyroid cancer. Br J Radiol. 2003;76:690–5.

    Article  PubMed  CAS  Google Scholar 

  8. Hall NC, Kloos RT. PET imaging in differentiated thyroid cancer: where does it fit and how do we use it? Arq Bras Endocrinol Metab. 2007;51:793–805.

    Article  Google Scholar 

  9. Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, et al. Correlation of 18F-fluorodeoxyglucose (FDG) accumulation with glucose transporter (Glut-1) expression in esophageal squamous cell carcinoma. Anticancer Res. 2003;23(4):3263–72.

    PubMed  CAS  Google Scholar 

  10. Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, et al. Prognostic value of [18F] fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107–13.

    Article  PubMed  CAS  Google Scholar 

  11. Schluter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med. 2001;42(1):77–8.

    Google Scholar 

  12. Herle AJ, Uller RP. Elevated serum thyroglobulin. A marker of metastases in differentiated thyroid carcinomas. J Clin Invest. 1975;56:272–7. doi:10.1172/JCI108090.

    Article  PubMed  CAS  Google Scholar 

  13. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med. 2002;43(9):1188–200.

    PubMed  CAS  Google Scholar 

  14. Feine U, Lietzenmayer R, Hanke JP, Müller-Schauenburg W. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18F FDG and 131I. Nuklearmedizin. 1995;34:127–34.

    PubMed  CAS  Google Scholar 

  15. Kim SJ, Lee TH, Kim IJ, Kim YK. Clinical implication of F-18 FDG PET/CT for differentiated thyroid cancer in patients with negative diagnostic iodine-123 scan and elevated thyroglobulin. Eur J Radiol. 2009;70:17–24.

    Article  PubMed  Google Scholar 

  16. Bertagna F, Bosio G, Biasiotto G, Rodella C, Puta E, Gabanelli S, et al. F-18 FDGPET/CT evaluation of patients with differentiated thyroid cancer with negative I-131 total body scan and high thyroglobulin level. Clin Nucl Med. 2009;34(11):756–61.

    Article  PubMed  Google Scholar 

  17. Franceschi M, Kusić Z, Franceschi D, Lukinac L, Rončević S. Thyroglobulin determination, neck ultrasonography and iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med. 1996;37:446–51.

    PubMed  CAS  Google Scholar 

  18. Samaan NA, Schultz PN, Haynie TP, Ordonez NG. Pulmonary metastasis of differentiated thyroid carcinoma: treatment results in 101 patients. J Clin Endocrinol Metab. 1985;60:376–80.

    Article  PubMed  CAS  Google Scholar 

  19. Frilling A, Gorges R, Tecklenborg K, Gassmann P, Bockhorn M, Clausen M, et al. Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma. Surgery. 2000;2000(128):1067–74.

    Article  Google Scholar 

  20. Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med. 2006;47:616–24.

    PubMed  Google Scholar 

  21. Filetti S, Damante G, Foti D. Thyrotropin stimulates glucose transport in cultured rat thyroid cells. Endocrinology. 1987;120:2576–81.

    Article  PubMed  CAS  Google Scholar 

  22. Hosaka Y, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology. 1992;131:159–65.

    Article  PubMed  CAS  Google Scholar 

  23. Middendorp M, Selkinski I, Happel C, Kranert WT, Grünwald F. Comparison of positron emission tomography with [(18)F]FDG and [(68)Ga]DOTATOC in recurrent differentiated thyroid cancer: preliminary data. Q J Nucl Med Mol Imaging. 2010;54(1):76–83.

    PubMed  CAS  Google Scholar 

  24. Kingpetch K, Pipatrattana R, Tepmongkol S, Sirisalipoch S, Chaiwatanarat T. Utility of 18F-FDG PET/CT in well differentiated thyroid carcinoma with high serum antithyroglobulin antibody. J Med Assoc Thai. 2011;94(10):1238–44.

    PubMed  Google Scholar 

  25. Ozkan E, Soydal C, Araz M, Kucuk ON, Demirer T. The additive clinical value of FDG PET/CT in defining the recurrence of disease in patients with differentiated thyroid cancer who have isolated increased antithyroglobulin antibody levels. Clin Nucl Med. 2012;37:755–8.

    Article  PubMed  Google Scholar 

  26. Gulec AS, Hoenie E, Hostetter R, Schwartzentruber D. PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol. 2007;5:65.

    Article  PubMed  Google Scholar 

  27. Deandreis D, Al Ghuzlan A, Leboulleux S. Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer. 2011;18:159–69.

    Article  PubMed  CAS  Google Scholar 

  28. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  PubMed  CAS  Google Scholar 

  29. Lowe VJ, Mullan BP, Hay ID, McIver B, Kasperbauer JL. 18F FDG PET of patients with Hürthle cell carcinoma. J Nucl Med. 2003;44:1402–6.

    PubMed  Google Scholar 

  30. Pryma DA, Schoder H, Gonen M, Robbins RJ, Larson SM, Yeung HW, et al. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients. J Nucl Med. 2006;47:1260–6.

    PubMed  Google Scholar 

  31. Bogsrud TV, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, Kasperbauer JL. 18F FDG PET in the management of patients with anaplastic thyroid carcinoma. Thyroid. 2008;18:713–9.

    Article  PubMed  CAS  Google Scholar 

  32. Poisson T, Deandreis D, Leboulleux S, Bidault F, Bonniaud G, Baillot S. (18)F-fluorodeoxyglucosepositron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37:2277–85.

    Article  PubMed  Google Scholar 

  33. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439:358–62.

    Article  PubMed  CAS  Google Scholar 

  34. Stafford SE, Gralow JR, Schubert EK, Rinn KJ, Dunnwald LK, Livingston RB, Mankoff DA. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol. 2002;9(8):913–21.

    Article  PubMed  Google Scholar 

  35. Clamp A, Danson S, Nguyen H, Cole D, Clemons M. Assessment of therapeutic response in patients with metastatic bone disease. Lancet Oncol. 2004;5(10):607–16.

    Article  PubMed  Google Scholar 

  36. Shammas A, Degirmenci B, Mountz JM, McCook BM, Branstetter B, Bencherif BB. 18FFDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med. 2007;48:221–6.

    PubMed  CAS  Google Scholar 

  37. Machens A, Ukkat J, Hauptmann S, Dralle H. Abnormal carcinoembryonic antigen levels and medullary thyroid cancer progression: a multivariate analysis. Arch Surg. 2007;142(3):289–93.

    Article  PubMed  CAS  Google Scholar 

  38. Nanni C, Rubello D, Fanti S, Farsad M, Ambrosini V, Rampin L, et al. Role of 18F FDGPET and PET CT imaging in thyroid cancer. Biomed Pharmacother. 2006;60:409–13.

    Article  PubMed  CAS  Google Scholar 

  39. Beheshti M, Pöcher S, Vali R, Waldenberger P, Broinger G, Nader M, et al. The value of 18FDOPA PETCT in patients with medullary thyroid carcinoma: comparison with 18FFDG PETCT. Eur Radiol. 2009;19:1425–34.

    Article  PubMed  Google Scholar 

  40. Ambrosini V, Marzola MC, Rubello D, Fanti S. (68)Ga somatostatin analogues PET and (18)FDOPA PET in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:46–8.

    Article  PubMed  Google Scholar 

  41. Evangelia S, Datseris IE, Phivi T, Stylianos T, Marinella T, et al. Correlation between calcitonin levels and [18F]FDG-PET/CT in the detection of recurrence in patients with sporadic and hereditary medullary thyroid cancer. ISRN Endocrinol. 2012;2012:375231. doi:10.5402/2012/375231.

  42. Skoura E, Datseris IE, Rondogianni P, Tsagarakis S, Tzanela M, Skilakaki M, et al. Correlation between Calcitonin Levels and [(18)F]FDG-PET/CT in the Detection of Recurrence in Patients with Sporadic and Hereditary Medullary Thyroid Cancer. ISRN Endocrinol. 2012;2012:375231. doi:10.5402/2012/375231. [Epub ahead of print].

  43. Karantanis D, Bogsrud TV, Wiseman GA, Mullan BP, Subramaniam RM, Nathan MA. Clinical significance of diffusely increased 18F FDG uptake in thyroid gland. J Nucl Med. 2007;48(6):896–901.

    Article  PubMed  CAS  Google Scholar 

  44. Burguera B, Gharib H. Thyroid incidentalomas. Prevalence, dignosis, significance and management. Endocrinol Metab Clin North Am. 2000;29(1):187–203.

    Article  PubMed  CAS  Google Scholar 

  45. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope. 2005;115:1074–8.

    Article  PubMed  Google Scholar 

  46. Hales NW, Krempl GA, Medina JE. Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am J Otolaryngol. 2008;29(2):113–8.

    Article  PubMed  Google Scholar 

  47. de Geus-Oei LF, Pieters GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH, et al. 18F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med. 2006;47:770–5.

    PubMed  Google Scholar 

  48. Deandreis D, Al Ghuzlan A, Auperin A, Vielh P, Caillou B, Chami L, et al. Is 18F-Fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22(2):165–72. doi:10.1089/thy.2011.0255.

    Article  PubMed  CAS  Google Scholar 

  49. Lambrecht RM, Woodhouse N, Phillips R, Wolczak D, Qureshi A, Reyes ED, et al. Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging. 1988;3:197–200.

    PubMed  CAS  Google Scholar 

  50. Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Gorges R, Jentzen W, et al. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol. 2004;14:2092–8.

    Article  PubMed  CAS  Google Scholar 

  51. Phan HT, Jager PL, Paans AM, Plukker JT, Sturkenboom MG, Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):958–65.

    Article  PubMed  Google Scholar 

  52. Freudenberg LS, Antoch G, Gorges R, Knust J, Pink R, Jentzen W, et al. Combined PET/CT with iodine-124 in diagnosis of spread metastatic thyroid carcinoma: a case report. Eur Radiol. 2003;13(Suppl):L19–23.

    Article  PubMed  Google Scholar 

  53. Eschmann SM, Reischl G, Bilger K, Kupferschlager J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging. 2002;29:760–7.

    Article  PubMed  CAS  Google Scholar 

  54. Philips AF, Hay bittle JL, Newbery GR. Use of Iodine-124 for the treatment of carcinoma of the thyroid. Acta Unio Int Contra Cancrum. 1960;16:1434–8.

    Google Scholar 

  55. Lassmann M, Reiners C, Lus M. Dosimetry and thyroid cancer: the individual dosage of radioiodine. Endocr Relat Cancer. 2010;17:R161–72.

    Article  PubMed  CAS  Google Scholar 

  56. Maxon HR. Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med. 1999;43(4):313–23.

    PubMed  CAS  Google Scholar 

  57. Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44(3):451–652.

    PubMed  CAS  Google Scholar 

  58. Beuthien-Baumann B, Strumpf A, Zessin J, Bredow J, Kotzerke J. Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2007;34(10):1604–9.

    Article  PubMed  CAS  Google Scholar 

  59. Nakajo M, Nakajo M, Jinguji M, Tani A, Kajiya Y, Tanabe H, et al. Diagnosis of metastases from postoperative differentiated thyroid cancer: comparison between FDG and FLT PET/CT studies. Radiology 2013 Mar 6. [Epub ahead of print].

  60. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379:458–60.

    Article  PubMed  CAS  Google Scholar 

  61. Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther. 2009;11:43–53.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No financial obligation involved in this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmuga Sundaram Palaniswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palaniswamy, S.S., Subramanyam, P. Diagnostic utility of PETCT in thyroid malignancies: an update. Ann Nucl Med 27, 681–693 (2013). https://doi.org/10.1007/s12149-013-0740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0740-6

Keywords

Navigation