Skip to main content

Advertisement

Log in

Cardiac sympathetic denervation is not related to nigrostriatal degeneration in Parkinson’s disease

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Aim

The aim of our study was to investigate the relationship between myocardial sympathetic degeneration and nigrostriatal impairment in patients affected by Parkinson’s disease (PD) by means of 123I-metaiodobenzylguanidine (123I MIBG) scintigraphy and N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-[123I]iodophenyl)nortropane (123I FP-CIT) scintigraphy.

Patients and methods

The study involved 37 patients with clinical diagnosis of PD (22 males and 15 females, mean age 62 years (±10), evaluated with 123I FP-CIT single photon emission computed tomography (SPECT) followed by 123I MIBG scintigraphy within 20 (±3) days. Early and delayed anterior chest images were acquired and the heart/mediastinum ratio (H/M ratio) was calculated. Furthermore, the population has been divided on the basis of the main clinical pattern to investigate the possible role of a tremor-dominant or an akinetic-dominant phenotype in this comparison.

Results

In PD population, there were no statistical relationships between early and delayed 123I MIBG cardiac and 123I FP-CIT striatal uptake in contralateral caudate (P > 0.05) and in contralateral putamen (P > 0.05) to the side mainly affected; no statistically significant relationships have been found at any level when considering ipsilateral striatum. We did not find statistically significant relationships when considering the single PD phenotypes.

Conclusions

The results of our study suggest that cardiac sympathetic system and nigrostriatal system are differently affected in PD. In particular, the sympathetic neurodegeneration rate is not related to nigrostriatal degeneration rate and vice versa in our series as detectable scintigraphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brooks DJ, Pavese N. Imaging non-motor aspects of Parkinson’s disease. Prog Brain Res. 2010;184:205–18.

    Article  PubMed  Google Scholar 

  2. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;381:121–34.

    Article  Google Scholar 

  3. Agid Y, Javoy-Agid F, Ruberg M. Biochemistry of neurotransmitters in Parkinson’s disease. In: Mardsen CD, Faha S, editors. Movement disorders 2. London: Butterwoths; 1987.

    Google Scholar 

  4. Chaudhri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5:235–45.

    Article  Google Scholar 

  5. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implications for clinical studies. J Nucl Cardiol. 2004;11:126–33.

    Article  PubMed  Google Scholar 

  6. Marek K, Jennings D, Seibyl J. Single-photon emission tomography and dopamine transporter imaging in Parkinson’s disease. Adv Neurol. 2003;91:183–91.

    PubMed  Google Scholar 

  7. Hughes A, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;66:181–4.

    Article  Google Scholar 

  8. Movement Disorder Society. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Movement disorders. 2003;18:738–50. doi:10.1002/mds.10473.

    Google Scholar 

  9. Spiegel J, Hellwing D, Samnick S, Jost W, Mollers M, Fassbender K, et al. Striatal FP-CIT uptake differs in the subtypes of early Parkinson’s disease. J Neural Tansm. 2007;114:331–5.

    Article  CAS  Google Scholar 

  10. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;14:513–21.

    Article  Google Scholar 

  11. Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord. 2003;18:890–7.

    Article  PubMed  Google Scholar 

  12. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine transporter ligands. Eur J Nucl Med Mol Imaging. 2002;29:30–5.

    Article  Google Scholar 

  13. Chang LT. A method for attenuation correction in radio nuclide computed tomography. IEEE Trans Nucl Sci. 1978;25:638–43.

    Google Scholar 

  14. Booij J, Tissingh G, Winogrodzka A, Boer GJ, Stoof JC, Wolters EC, et al. Practical benefit of 123I-FP-CIT SPET in the demonstration of the dopaminergic deficit in Parkinson’s disease. Eur J Nucl Med. 1997;24:68–71.

    Article  PubMed  CAS  Google Scholar 

  15. Schillaci O, Pierantozzi M, Filippi L, Manni C, Brusa L, Danieli R, et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with (123)I-FP-CIT in patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32:1452–6.

    Article  PubMed  CAS  Google Scholar 

  16. Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (MIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.

    Article  PubMed  Google Scholar 

  17. Kägi G, Bhatia KP, Telosa E. The role of DAT-SPECT in movement disorders. J Neurol Neurosurg Psychiatry. 2010;81:5–12.

    Article  PubMed  Google Scholar 

  18. Filippi L, Manni C, Pierantozzi M, Brusa L, Danieli R, Stanzione P, et al. 123I-FP-CIT semi-quantitative SPECT detects preclinical bilateral dopaminergic deficit in early Parkinson’s disease with unilateral symptoms. Nucl Med Commun. 2005;26:421–6.

    Article  PubMed  CAS  Google Scholar 

  19. Matsui H, Nishinaka K, Oda M, Komatsu K, Kubori T, Udaka F. Does cardiac metaiodobenzylguanidine (MIBG) uptake in Parkinson’s disease correlate with major autonomic symptoms? Parkinsonism Relat Disord. 2006;12:284–8.

    Article  PubMed  Google Scholar 

  20. Suzuki M, Urashima M, Oka H, Hashimoto M, Taira K. Cardiac sympathetic denervation in bradykinesia-dominant Parkinson’s disease. Neuroreport. 2007;18:1867–70.

    Article  PubMed  Google Scholar 

  21. Spiegel J, Hellwig D, Farmakis G, Jost WH, Samnick S, Fassbender K, et al. Myocardial sympathetic degeneration correlates with clinical phenotype of Parkinson’s disease. Mov Disord. 2007;22:1004–8.

    Article  PubMed  Google Scholar 

  22. Hakusui S, Yasuda T, Yanagi T, Tohyama J, Hasegawa Y, Koike Y, et al. A radiological analysis of heart sympathetic functions with meta-[123I]iodobenzylguanidine in neurological patients with autonomic failure. J Auton Nerv Syst. 1994;49:81–4.

    Article  PubMed  CAS  Google Scholar 

  23. Spiegel J, Möllers MO, Jost WH, Fuss G, Samnick S, Dillmann U, et al. FP-CIT and MIBG scintigraphy in early Parkinson’s disease. Mov Disord. 2005;20:552–61.

    Article  PubMed  Google Scholar 

  24. Spiegel J, Hellwig D, Jost WH, Farmakis G, Samnick S, Fassbender K, et al. Cerebral and extracranial neurodegeneration are strongly coupled in Parkinson’s Disease. Open Neurol J. 2007;1:1–4.

    PubMed  CAS  Google Scholar 

  25. Schillaci O, Chiaravalloti A, Pierantozzi M, Di Pietro B, Koch G, Bruni C, et al. Different patterns of nigrostriatal degeneration in tremor type versus the akinetic-rigid and mixed types of Parkinson’s disease at the early stages: molecular imaging with 123I-FP-CIT SPECT. Int J Mol Med. 2011;28:881–6.

    PubMed  CAS  Google Scholar 

  26. Ishibashi K, Saito Y, Murayama S, Kanemaru K, Oda K, Ishiwata K, et al. Validation of cardiac (123)I-MIBG scintigraphy in patients with Parkinson’s disease who were diagnosed with dopamine PET. Eur J Nucl Med Mol Imaging. 2010;37:3–11.

    Article  PubMed  Google Scholar 

  27. Chiaravalloti A, Stefani A, Tavolozza M, Pierantozzi M, Di Biagio D, Olivola E, et al. Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson’s disease: molecular imaging with 123I-MIBG. Mol Med Rep. 2012;6:1337–42.

    PubMed  CAS  Google Scholar 

  28. Merlet P, Benvenuti C, Moyse D, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med. 1999;40:917–23.

    PubMed  CAS  Google Scholar 

  29. Saiki S, Hirose G, Sakai K, Kataoka S, Hori A, Saiki M, et al. Cardiac 123I-MIBG scintigraphy can assess the disease severity and phenotype of PD. J Neurol Sci. 2004;220:105–11.

    Article  PubMed  Google Scholar 

  30. Schillaci O, Chiaravalloti A, Di Pietro B, Stefani A. Thalamic (123)I FP-CIT uptake in a patient with clinical diagnosis of Parkinson’s disease and depression. Hell J Nucl Med. 2012;15:74–5.

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Chiaravalloti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiaravalloti, A., Stefani, A., Di Biagio, D. et al. Cardiac sympathetic denervation is not related to nigrostriatal degeneration in Parkinson’s disease. Ann Nucl Med 27, 444–451 (2013). https://doi.org/10.1007/s12149-013-0702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0702-z

Keywords

Navigation