Skip to main content
Log in

Validation of novel calibration scheme with traceable point-like 22Na sources on six types of PET scanners

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

To improve the reliability and convenience of the calibration procedure of positron emission tomography (PET) scanners, we have been developing a novel calibration path based on traceable point-like sources. When using 22Na sources, special care should be taken to avoid the effects of 1.275-MeV γ rays accompanying β + decays. The purpose of this study is to validate this new calibration scheme with traceable point-like 22Na sources on various types of PET scanners.

Method

Traceable point-like 22Na sources with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons were used. The tested PET scanners included a clinical whole-body PET scanner, four types of clinical PET/CT scanners from different manufacturers, and a small-animal PET scanner. The region of interest (ROI) diameter dependence of ROI values was represented with a fitting function, which was assumed to consist of a recovery part due to spatial resolution and a quadratic background part originating from the scattered γ rays.

Results

The observed ROI radius dependence was well represented with the assumed fitting function (R 2 > 0.994). The calibration factors determined using the point-like sources were consistent with those by the standard cross-calibration method within an uncertainty of ±4 %, which was reasonable considering the uncertainty in the standard cross-calibration method.

Conclusion

This novel calibration scheme based on the use of traceable 22Na point-like sources was successfully validated for six types of commercial PET scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reist HW, Stadelmann O, Kleeb W. Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification. Eur J Nucl Med. 1989;15:732–5.

    Article  PubMed  CAS  Google Scholar 

  2. Spinks T, Jones T, Heather J, Gilardi M. Quality control procedures in positron tomography. Eur J Nucl Med. 1989;15:736–40.

    Article  PubMed  CAS  Google Scholar 

  3. Geworski L, Knoop BO, de Wit M, Ivancević V, Bares R, Munz DL. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med. 2002;43:635–9.

    PubMed  Google Scholar 

  4. Eichling JO, Higgins CS, Ter-Pogossian MM. Determination of radionuclide concentrations with positron CT scanning (PET): concise communication. J Nucl Med. 1977;18:845–7.

    PubMed  CAS  Google Scholar 

  5. Zimmerman B, Cessna JT. Development of a traceable calibration methodology for solid 68Ge/68Ga sources used as a calibration surrogate for 18F in radionuclide activity calibrators. J Nucl Med. 2010;51:448–53.

    Article  PubMed  CAS  Google Scholar 

  6. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11S–20S.

    Article  PubMed  CAS  Google Scholar 

  7. Scheuermann JS, Saffer JR, Karp JS, Levering AM, Siegel BA. Qualification of PET scanners for use in multicenter cancer clinical trials: the American College of Radiology Imaging Network experience. J Nucl Med. 2009;50:1187–93.

    Article  PubMed  Google Scholar 

  8. Vynckier S, Derreumaux S, Richard F, Bol A, Michel C, Wambersie A. Is it possible to verify directly a proton-treatment plan using positron emission tomography? Radiother Oncol. 1993;26:275–7.

    Article  PubMed  CAS  Google Scholar 

  9. Enghardt W, Debus J, Haberer T, Hascha BG, Hinza R, Jäkelb O, et al. Positron emission tomography for quality assurance of cancer therapy with light ion beams. Nucl Phys A. 1999;654:1047–8.

    Article  Google Scholar 

  10. Enghardt W, Crespo P, Fiedler F, Parodia K, Pawelkea J, Pönischa F. Charged hadron tumour therapy monitoring by means of PET. Nucl Instrum Methods A. 2004;525:284–8.

    Article  CAS  Google Scholar 

  11. Paradoi K, Paganetti H, Cascio E, Flanz JB, Bonab AA, Alpert NM, et al. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants. Med Phys. 2007;34:419–35.

    Article  Google Scholar 

  12. International Electrotechnical Commission (IEC). Radionuclide imaging devices—characteristics and test conditions. Part 1. Positron emission tomographs. IEC Standard 61675-1. 1998.

  13. National Electrical Manufacturers Association (NEMA). Performance measurements of positron emission tomographs. NEMA Standards Publication NU2-2001. 2001.

  14. National Electrical Manufacturers Association (NEMA). Performance measurements of positron emission tomographs. NEMA Standards Publication NU2-2007. 2007.

  15. National Electrical Manufacturers Association (NEMA). Performance measurements of small animal positron emission tomographs. NEMA Standards Publication NU4-2008. 2008.

  16. International Electrotechnical Commission (IEC). Radionuclide imaging devices—characteristics and test conditions—part 1: positron emission tomographs. IEC 61675-1 Edition 1.1 2008-06. 2008.

  17. International Atomic Energy Agency (IAEA). Quality assurance for PET and PET/CT systems. IAEA Human Health Series No. 1. 2009.

  18. Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability off PET/CT standardized uptake value measurements. J Nucl Med. 2011;52:218–24.

    Article  PubMed  Google Scholar 

  19. Simões C, Caldeira M, Oliveira C. Comparative study of Curiementor ionization chambers using Monte Carlo simulations. Appl Radiat Isot. 2010;68:1121–7.

    Article  PubMed  Google Scholar 

  20. Bochud FO, Laedermann JP, Baechler S, Kosinski M, Bailat CJ. Usefulness of specific calibration coefficients for gamma-emitting sources measured by radionuclide calibrators in nuclear medicine. Med Phys. 2011;38:4073–80.

    Article  PubMed  CAS  Google Scholar 

  21. Fahey FH, Kinahan PE, Doot RK, Kocak M, Thurston H, Poussaint TY. Variability in PET quantitation within a multicenter consortium. Med Phys. 2010;37:3660–6.

    Article  PubMed  Google Scholar 

  22. Doot RK, Scheuermann JS, Christian PE, Karp JS, Kinahan PE. Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Med Phys. 2010;37:6035–46.

    Article  PubMed  CAS  Google Scholar 

  23. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend D, editors. The theory and practice of 3D PET. Dordrecht: Kluwer Academic Publishers; 1998.

  24. Bailey DL, Jones T. A method for calibrating three-dimensional positron emission tomography without scatter correction. Eur J Nucl Med. 1997;24:660–4.

    PubMed  CAS  Google Scholar 

  25. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med. 1991;18:374–9.

    Article  PubMed  CAS  Google Scholar 

  26. Hasegawa T, Sato Y, Yamada T, Oda K, Wada Y, Yoshida E, et al. Characteristics of annihilation photons emitted from new types of point-like 22Na radioactive sources with symmetric absorber design. IEEE Trans Nucl Sci. 2011;58:43–50.

    Article  CAS  Google Scholar 

  27. Hasegawa T, Oda K, Wada Y, Sato Y, Yamada T. A practical method of determining cross-calibration factors of PET scanners by moving a point-like 22Na radioactive source. Ann Nucl Med. 2010;24:655–61.

    Article  PubMed  Google Scholar 

  28. Hasegawa T, Sato Y, Oda K, Wada Y, Murayama H, Yamada T. Semi-quantitative and simulation analyses of effects of gamma rays on determination of calibration factors of PET scanners with point-like 22Na sources. Phys Med Biol. 2011;56:6031–45.

    Article  PubMed  CAS  Google Scholar 

  29. Geant4 Collaboration. Geant4-a simulation toolkit. Nucl Instrum Method. 2003;A506:250–303.

    Google Scholar 

  30. Firestone RB. Chart of nuclides, national nuclear data center. Brookhaven national laboratory. Nuclear Data Sheets. 2005;106:1.

    Article  CAS  Google Scholar 

  31. Fujiwara T, Watanuki S, Yamamoto S, Miyake M, Seo S, Itoh M, et al. Performance evaluation of a large axial field-of-view PET scanner: SET-2400W. Ann Nucl Med. 1997;11:307–13.

    Article  PubMed  CAS  Google Scholar 

  32. Jakoby BW, Bercier Y, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci. 2009;56:633–9.

    Article  Google Scholar 

  33. Tsukamoto E, Ochi S. PET/CT today: system and its impact on cancer diagnosis. Ann Nucl Med. 2006;20:255–67.

    Article  PubMed  Google Scholar 

  34. De Ponti E, Morzenti S, Guerra L, Pasquali C, Arosio M, Bettinardi V, et al. Performance measurements for the PET/CT Discovery-600 using NEMA NU 2–2007 standards. Med Phys. 2011;38:968–74.

    Article  PubMed  Google Scholar 

  35. Lehnert W, Meikle SR, Newport DF. Count rate performance of the MicroPET Focus 220 animal scanner in singles transmission scanning mode. IEEE Trans Nucl Sci. 2008;55:2493–500.

    Article  Google Scholar 

  36. Podgoršak EB. Radiation physics for medical physicists. 2nd ed. Heidelberg: Springer; 2010.

    Book  Google Scholar 

  37. Charlton M, Humberston JW. Positron physics. Cambridge: Cambridge university press; 2001.

    Google Scholar 

  38. Azuelos G, Kitching JE. The probability of positron annihilation-in-flight for allowed beta decay. At Data Nucl Data Tables. 1976;17:103–5.

    Article  CAS  Google Scholar 

  39. Dryzek J, Suzuki T, Yu R. Detection of the positron annihilation in flight process in condensed matter. Rad Phys Chem. 2007;76:297–9.

    Article  CAS  Google Scholar 

  40. Hasegawa T, Oda K, Yamada T, Matsumoto M, Sato Y, Murayama H, et al. Novel point-like 68Ge/68Ga radioactive source with spherical positron absorber. IEEE Trans Nucl Sci. 2012;59:24–9.

    Article  CAS  Google Scholar 

  41. Sato Y, Murayama H, Yamada T, Hasegawa T, Oda K, Unno Y, et al. Monte Carlo simulation of the standardization of 22Na using scintillation detector arrays. Appl Radiat Isot. 2010;68:1354–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. K. Ogawa, Dr. T. Takeda, Dr. K. Saito (Kitasato University), Dr. Y. Ota, Dr. Y. Asano, Dr. Y. Inoue, Dr. T. Tokushige, Dr. K. Tagami (Kitasato University Hospital), Dr. K. Ishiwata (Tokyo Metropolitan Institute of Gerontology), and Dr. A. Osawa (Cancer Institute Hospital of Japanese Foundation of Cancer Research). This work was supported in part by grants from the Ministry of Education, Science and Culture of Japan (Grant-in-Aid Nos. 21611007 24601014), Kitasato University School of Allied Health Sciences (Grant-in-Aid for Research Project Nos.2011-1002, 2012-1003), and the Japanese Society of Medical Physics (JSMP Research Grants of 2008 and 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, T., Oda, K., Wada, Y. et al. Validation of novel calibration scheme with traceable point-like 22Na sources on six types of PET scanners. Ann Nucl Med 27, 346–354 (2013). https://doi.org/10.1007/s12149-013-0692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0692-x

Keywords

Navigation