Skip to main content
Log in

A heuristic statistical stopping rule for iterative reconstruction in emission tomography

  • Technical note
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

We propose a statistical stopping criterion for iterative reconstruction in emission tomography based on a heuristic statistical description of the reconstruction process.

Methods

The method was assessed for MLEM reconstruction. Based on Monte-Carlo numerical simulations and using a perfectly modeled system matrix, our method was compared with classical iterative reconstruction followed by low-pass filtering in terms of Euclidian distance to the exact object, noise, and resolution. The stopping criterion was then evaluated with realistic PET data of a Hoffman brain phantom produced using the GATE platform for different count levels.

Results

The numerical experiments showed that compared with the classical method, our technique yielded significant improvement of the noise-resolution tradeoff for a wide range of counting statistics compatible with routine clinical settings. When working with realistic data, the stopping rule allowed a qualitatively and quantitatively efficient determination of the optimal image.

Conclusions

Our method appears to give a reliable estimation of the optimal stopping point for iterative reconstruction. It should thus be of practical interest as it produces images with similar or better quality than classical post-filtered iterative reconstruction with a mastered computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol. 1970;29:471–81.

    Article  PubMed  CAS  Google Scholar 

  2. Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol. 1976;21:689–732.

    Article  PubMed  CAS  Google Scholar 

  3. Goitein M. Three-dimensional density reconstruction from a series of twodimensional projections. Nucl Instrum Methods. 1972;101:509–18.

    Article  Google Scholar 

  4. Gilbert PFC. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. 1972;36:105–17.

    Article  PubMed  CAS  Google Scholar 

  5. Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys. 1993;20:1675–84.

    Article  PubMed  CAS  Google Scholar 

  6. Schmidlin P. Iterative separation of sections in tomographic scintigrams. Nucl Med. 1972;11(1):1–16.

    CAS  Google Scholar 

  7. Darroch JN, Ratcliff D. Generalized iterative scaling for log-linear models. Ann Math Stat. 1972;43:1470–80.

    Article  Google Scholar 

  8. Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39:1–38.

    Google Scholar 

  9. Barrett HH, Swindell W. Radiological imaging—the theory of image formation, detection, and processing. New York: Academic Press; 1981.

    Google Scholar 

  10. Shepp VA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.

    Article  PubMed  CAS  Google Scholar 

  11. Byrne CL. Block-iterative methods for image reconstruction from projections. IEEE Trans Image Proc. 1996;5:792–4.

    Article  CAS  Google Scholar 

  12. Byrne CL. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Proc. 1998;7:100–9.

    Article  CAS  Google Scholar 

  13. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  14. Browne J, de Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15:687–99.

    Article  PubMed  CAS  Google Scholar 

  15. Mesina CT, Boellaard R, Jongbloed G, Van der Vaart AW, Lammertsma AA. Experimental evaluation of iterative reconstruction versus filtered backprojection for 3D [15O]water PET activation studies using statistical parametric mapping analysis. Neuroimage. 2003;19:1170–9.

    Article  PubMed  Google Scholar 

  16. Lubberink M, Boellaard R, Van der Weerdt AP, Visser AC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med. 2004;45:2008–15.

    PubMed  Google Scholar 

  17. Razifar P, Lubberink M, Schneider H, Lâgström B, Bengtsson E, Bergström M. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function. BMC Med Imaging. 2005;5(1):3.

    Article  PubMed  Google Scholar 

  18. Liew SC, Hasegawa BH, Brown JK, Lang TF. Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm. Phys Med Biol. 1993;38:1713–27.

    Article  PubMed  CAS  Google Scholar 

  19. Mariano-Goulart D, Fourcade M, Bernon JL, Rossi M, Zanca M. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm. Comput Med Imaging Graph. 2003;27:53–63.

    Article  PubMed  CAS  Google Scholar 

  20. Hebert TJ. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images. Phys Med Biol. 1990;35:1221–32.

    Article  Google Scholar 

  21. Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6:228–38.

    Article  PubMed  CAS  Google Scholar 

  22. Falcon C, Juvells I, Pavia J, Ros D. Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol. 1998;43:1271–85.

    Article  PubMed  CAS  Google Scholar 

  23. Liang Z, Jaszczak R, Greer K. On Bayesian image reconstruction from projections: uniform and nonuniform a priori source information. IEEE Trans Med Imaging. 1989;8:227–35.

    Article  PubMed  CAS  Google Scholar 

  24. Fessler JA, Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans Image Proc. 1995;4:1417–29.

    Article  CAS  Google Scholar 

  25. Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405–22.

    Article  PubMed  Google Scholar 

  26. Slijpen ETP, Beekman FJ. Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci. 1999;46:2233–8.

    Article  Google Scholar 

  27. Knuth DE. Seminumerical algorithms. The art of computer programming, vol 2. Boston: Addison Wesley; 1969.

    Google Scholar 

  28. Jan S et al. for the OpenGATE collaboration, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.

    Article  PubMed  CAS  Google Scholar 

  29. Lamare F, Turzo A, Bizais Y, Le Rest CC, Visvikis D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys Med Biol. 2006;51:943–62.

    Article  PubMed  CAS  Google Scholar 

  30. Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.

    Article  PubMed  CAS  Google Scholar 

  31. Kadrmas DJ. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol. 2004;49:4731–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank I. Buvat and A. Dubois for their technical support regarding the GATE simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ben Bouallègue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Bouallègue, F., Crouzet, J.F. & Mariano-Goulart, D. A heuristic statistical stopping rule for iterative reconstruction in emission tomography. Ann Nucl Med 27, 84–95 (2013). https://doi.org/10.1007/s12149-012-0657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-012-0657-5

Keywords

Navigation