Skip to main content

Advertisement

Log in

Influence of thyroid-stimulating hormone on 18F-fluorodeoxyglucose and 99mTc-methoxyisobutylisonitrile uptake in human poorly differentiated thyroid cancer cells in vitro

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

In poorly differentiated thyroid cancer originating from thyroid follicular cells, the ability to concentrate iodine is lost. This makes recurrence undetectable by 131I whole-body scan. In this situation, other radiopharmaceuticals, such as 18F-fluorodeoxyglucose (18F-FDG) and technetium-99m-methoxyisobutylisonitrile (99mTc-MIBI), are used to evaluate recurrence or metastasis. Some reports suggest that 18F-FDG uptake is increased by thyroid-stimulating hormone (TSH) stimulation. This study aimed to determine the influence of TSH on 18F-FDG and 99mTc-MIBI uptake in human poorly differentiated thyroid cancer cells in vitro.

Materials and methods

The cells were stimulated with 1000 μU/ml of recombinant human thyroid-stimulating hormone (rhTSH) for 1 day, 3 days, and 5 days. Each cell was incubated with 0.5 MBq/ml-1 MBq/ml of 18F-FDG or 0.5 MBq/ml-1 MBq/ml of 99mTc-MIBI for 1 h at 37°C. The uptake of each radiopharmaceutical in the cells was quantified as a percent of whole radioactivity per total viable cell number. The quantification of glucose transporter 1, 2, 3 and 4 mRNA expression was measured using RT-PCR.

Results

TSH stimulation increased 18F-FDG uptake in a time-dependent manner. Following 5 days of rhTSH stimulation, 18F-FDG uptake was approximately 2.2 times that of the control. The increase in 18F-FDG uptake following rhTSH stimulation was correlated to the increase in GLUT4 mRNA level. The GLUT1 mRNA level was unchanged. An increased uptake of 99mTc-MIBI was observed with a pattern similar to that of 18F-FDG. The 99mTc-MIBI uptake was approximately 1.5 times that of the control 5 days later.

Conclusions

These results suggest that TSH stimulates 18F-FDG and 99mTc-MIBI uptake in poorly differentiated papillary thyroid cancer, and therefore 18F-FDG-PET or 99mTc-MIBI scans under TSH stimulation may be more accurate than under suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med 1998;338:297–306.

    Article  PubMed  CAS  Google Scholar 

  2. Park SH, Suh EH, Chi JG. A histopathologic study on 1095 surgically resected thyroid specimens. Jpn J Clin Oncol 1988;18:297–302.

    PubMed  CAS  Google Scholar 

  3. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 5 3856 cases of thyroid carcinoma treated in the US, 1985–1998. Cancer 1998;83:2638–2648

    Article  PubMed  CAS  Google Scholar 

  4. Biermann M, Schober O. Should high hTg levels in the absence of iodine uptake be treated? Against. Eur J Nucl Med Mol Imaging 2003;30:160–163.

    Article  PubMed  CAS  Google Scholar 

  5. Lind P. Should high hTg levels in the absence of iodine uptake be treated? For Eur J Nucl Med Mol Imaging 2003;30:157–160.

    Article  Google Scholar 

  6. Fridrich L, Messa C, Landoni C, Lucignani G, Moncayo R, Kendler D, et al. Whole-body scintigraphy with 99mTc-MIBI, 18F-FDG and 131I in patients with metastatic thyroid carcinoma. Nucl Med Commun 1997;18:3–9.

    Article  PubMed  CAS  Google Scholar 

  7. Rubello D, Mazzarotto K, Casara D. The role of technetium-99m methoxyisobutylisonitrile scintigraphy in the planning of therapy and follow-up of patients with differentiated thyroid carcinoma after surgery. Eur J Nucl Med Mol Imaging 2000;27:431–440.

    Article  CAS  Google Scholar 

  8. Küçk, NÖ, Kulak HA, Aras G. Clinical importance of technetium-99m-methoxyisobutylisonitrile (MIBI) scintigraphy in differentiated thyroid carcinoma patients with elevated thyroglobulin levels and negative I-131 scanning results. Ann Nucl Med 2006;20:393–397.

    Article  Google Scholar 

  9. Ronga G, Ventroni G, Montesano T, Filesi M, Ciancamerla M, Nicola AD, et al. Sensitivity of [99mTC]methoxyisobutyliso nitrile scan in patients with metastatic differentiated thyroid cancer. Q J Nucl Med Mol imaging 2007;51:364–371.

    PubMed  CAS  Google Scholar 

  10. Alzahrani AS, Raef H, Sultan A, Al Sobhi S, Ingemansson S, Ahmed M, et al. Impact of cervical lymph node dissection on serum TG and the course of disease in Tg-positive, radioactive iodine whole body scan-negative recurrent/persistent papillary thyroid cancer. J Endocrinol Invest 2002;25:526–531.

    PubMed  CAS  Google Scholar 

  11. Lind P, Kresnik E, Kumnig G, Gallowitsch HJ, Igerc I, Matschnig S, et al. 18F-FDG-PET in the follow-up of thyroid cancer. Acta Med Austriaca 2003;30:17–21.

    Article  PubMed  CAS  Google Scholar 

  12. Altenvoerde G, Lerch H, Kuwert T, Matheja P, Schafers M, Schober O. Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbecks Arch Surg 1998;383:160–163.

    PubMed  CAS  Google Scholar 

  13. Grunwald F, Kalicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547–1552.

    Article  PubMed  CAS  Google Scholar 

  14. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:1342–1348.

    Article  PubMed  CAS  Google Scholar 

  15. Helal BO, Merlet P, Toubert ME, Franc B, Schvartz C, Gauthier-Koelesnikov H, et al. Clinical impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy. J Nucl Med 2001;42:1464–1469.

    PubMed  CAS  Google Scholar 

  16. Wang W, Macapinlac H, Larson SM, Yeh SD, Akhurst T, Finn RD, et al. [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999;84:2291–2302.

    Article  PubMed  CAS  Google Scholar 

  17. Stokkel MP, de Klerk JH, Zelissen PM, Koppeschaar HP, van Rijk PP. Fluorine-18 fluorodeoxyglucose dual-head positron emission tomography in the detection of recurrent differentiated thyroid cancer: preliminary results. Eur J Nucl Med 1999;26:1606–1609.

    Article  PubMed  CAS  Google Scholar 

  18. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37:1468–1472.

    PubMed  CAS  Google Scholar 

  19. Feine U. Fluor-18-deoxyglucose positron emission tomography in differentiated thyroid cancer. Eur J Endocrinol 1998;138:492–496.

    Article  PubMed  CAS  Google Scholar 

  20. Sisson JC, Ackermann RJ, Meyer MA, Wahl RL. Uptake of 18-fluoro-2-deoxy-d-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 1993;77:1090–1094.

    Article  PubMed  CAS  Google Scholar 

  21. Moog F, Linke R, Manthey N, Tiling R, Knesewitsch P, Tatsch K, et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 2000;41:1989–1995.

    PubMed  CAS  Google Scholar 

  22. van Tol K, Jager P, Piers D, Pruim J, de Vries E, Dullaart R, et al. Better yield of [18F]fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated carcinoma during thyrotropin stimulation. Thyroid 2002;12:381–387

    Article  PubMed  Google Scholar 

  23. Petrich T, Börner R, Otto D, Hoffmann M, Knapp WH. Influence of rhTSH on [18F] fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2002;29:641–647.

    Article  PubMed  CAS  Google Scholar 

  24. Filetti S, Camante G, Foti D. Thyrotropin stimulates glucose transport in cultured rat thyroid cells. Endocrinology 1987;120:2576–2581.

    Article  PubMed  CAS  Google Scholar 

  25. Hosaka S, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expression in cultured rat thyroid cell by thyrotropin. Endocrinology 1992;131:159–165.

    Article  PubMed  CAS  Google Scholar 

  26. Deichen JT, Schmidt C, Prante O, Maschauer S, Papadopoulos T, Kuwert T. Influence of TSH on uptake of [18F]fluorodeoxyglucose in human thyroid cells in vitro. Eur J Nucl Med Mol Imaging 2004;31:507–512.

    Article  PubMed  CAS  Google Scholar 

  27. Bläser D, Maschauer S, Kuwert T, Prante O. In vitro studies on the signal transduction of thyroidal uptake of 18F-FDG and 131I-iodide. J Nucl Med 2006;47:1382–1388.

    PubMed  Google Scholar 

  28. Waxman AD. Thallium-201 and technetium-99m methoxyisobutylisonitrile (MIBI) in nuclear oncology. In: Sandler MP, Coleman RE, Patton JA, Wackers FJT, Gottschalk A, editors. Diagnostic Nuclear Medicine, 4th ed. Lippincott, Williams & Wilkins: New York; 2003. p. 931–947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Kyo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.H., Yoo, I.R., Chung, Y.A. et al. Influence of thyroid-stimulating hormone on 18F-fluorodeoxyglucose and 99mTc-methoxyisobutylisonitrile uptake in human poorly differentiated thyroid cancer cells in vitro. Ann Nucl Med 23, 131–136 (2009). https://doi.org/10.1007/s12149-008-0218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-008-0218-0

Keywords

Navigation