Skip to main content
Log in

Role of NMDA receptor upon [14C]acetate uptake into intact rat brain

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

To clarify the role of N-methyl-d-aspartate (NMDA) receptors upon [14C]acetate uptake in the rodent central nervous system (CNS), ibotenic acid (IBO) was infused into the right striatum of the rat brain.

Methods

Autoradiograms of [14C]acetate uptake in the brain for 2 h following the infusion of IBO (10 μg/μl) were obtained in both non-treated and MK-801 (1 mg/kg, i.v.) pretreated rats. The effect of MK-801 on [14C]acetate uptake in the normal rat brain was also studied.

Results

Infusion of IBO significantly decreased [14C]acetate uptake in the infused side of the striatum. The expression of monocarboxylate transporter-1 was not altered, suggesting that the activity of tricarboxylic acid (TCA) cycle in glial cells might be depressed. Pretreatment with MK-801 completely blocked the decreasing effect of IBO on [14C]acetate uptake. MK-801 also increased [14C]acetate uptake in the whole brain of normal rats.

Conclusions

These results indicate the important roles of NMDA receptors on [14C]acetate uptake in the intact rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muir D, Berl S, Clarke DD. Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res 1986; 380:336–340.

    Article  PubMed  CAS  Google Scholar 

  2. Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB. Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 1993;22:19–29.

    Article  PubMed  CAS  Google Scholar 

  3. Waniewski RA, Martin DL. Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 1998; 18:5225–5233.

    PubMed  CAS  Google Scholar 

  4. Bröer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, et al. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes: expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 1997;272:30096–30102.

    Article  PubMed  Google Scholar 

  5. Fonnum F, Johnsen A, Hassel B. Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 1997;21: 106–113.

    Article  PubMed  CAS  Google Scholar 

  6. Hosoi R, Okada M, Hatazawa J, Gee A, Inoue O. Effects of astrocytic energy metabolism depressant on 14C-acetate uptake in intact rat brain. J Cereb blood Flow Metab 2004;24: 188–190.

    Article  PubMed  CAS  Google Scholar 

  7. Hosoi R, Kashiwagi Y, Tokumura M, Abe K, Hatazawa J, Inoue O. Sensitive reduction in 14C-acetate uptake in a shortterm ischemic rat brain. J Stroke Cerebrovasc Dis 2007;16: 77–81.

    Article  PubMed  Google Scholar 

  8. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999;399:A7–A14.

    PubMed  CAS  Google Scholar 

  9. Bambrick L, Kristian T, Fiskum G. Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res 2004;29:601–608.

    Article  PubMed  CAS  Google Scholar 

  10. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 1994; 25:10625–10629.

    Article  Google Scholar 

  11. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic Press; 1998.

    Google Scholar 

  12. Dienel GA, Liu K, Popp D, Cruz NF. Enhanced acetate and glucose utilization during graded photic stimulation. Neuronal-glial interactions in vivo. Ann N Y Acad Sci 1999; 893:279–281.

    Article  PubMed  CAS  Google Scholar 

  13. Cruz NF, Lasater A, Zielke HR, Dienel GA. Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 2005; 92:934–947.

    Article  PubMed  CAS  Google Scholar 

  14. Nehls DG, Park CK, MacCormack AG, McCulloch J. The effects of N-methyl-d-aspartate receptor blockade with MK-801 upon the relationship between cerebral blood flow and glucose utilisation. Brain Res 1990;511:271–279.

    Article  PubMed  CAS  Google Scholar 

  15. Roussel S, Pinard E, Seylaz J. The acute effects of MK-801 on cerebral blood flow and tissue partial pressures of oxygen and carbon dioxide in conscious and alpha-chloralose anaesthetized rats. Neuroscience 1992;47:959–965.

    Article  PubMed  CAS  Google Scholar 

  16. Brenner E, Kondziella D, Håberg A, Sonnewald U. Impaired glutamine metabolism in NMDA receptor hypofunction induced by MK801. J Neurochem 2005;94:1594–1603.

    Article  PubMed  CAS  Google Scholar 

  17. Yang Y, Li Q, Miyashita H, Yang T, Shuaib A. Different dynamic patterns of extracellular glutamate release in rat hippocampus after permanent or 30-min transient cerebral ischemia and histological correlation. Neuropathology 2001; 21:181–187.

    Article  PubMed  CAS  Google Scholar 

  18. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 2006;48:394–403.

    Article  PubMed  CAS  Google Scholar 

  19. Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J Neurochem 1993;60:1589–1604.

    Article  PubMed  CAS  Google Scholar 

  20. Wooten GF, Collins RC. Regional brain glucose utilization following intrastriatal injections of kainic acid. Brain Res 1980;201:173–184.

    Article  PubMed  CAS  Google Scholar 

  21. Amitani M, Ohashi A, Hatazawa J, Gee A, Inoue O. Effect of PK11195 on attenuating the enhancement of glucose utilization induced by quinolinic acid infusion in the rat brain. Synapse 2008;62:253–258.

    Article  PubMed  CAS  Google Scholar 

  22. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999;283:496–497.

    Article  PubMed  CAS  Google Scholar 

  23. Dienel GA, Hertz L. Glucose and lactate metabolism during brain activation. J Neurosci Res 2001;66:824–838.

    Article  PubMed  CAS  Google Scholar 

  24. Chih CP, Roberts EL Jr. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 2003;23: 1263–1281.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Hirose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, S., Momosaki, S., Hosoi, R. et al. Role of NMDA receptor upon [14C]acetate uptake into intact rat brain. Ann Nucl Med 23, 143–147 (2009). https://doi.org/10.1007/s12149-008-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-008-0216-2

Keywords

Navigation