Skip to main content

Advertisement

Log in

Validation of fast-RAMLA in clinical PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Images using the fast row action maximum likelihood algorithm (fast-RAMLA), which employs half-interpolated sinograms of conventional 3DRAMLA, are immediately generated following positron emission tomography (PET) scanning and are invariably produced in the process of line-of-response RAMLA (LOR-RAMLA) reconstruction. We quantitatively and visually compared the clinical validity of dual time point [18F]-FDG imaging with fast-RAMLA and LOR-RAMLA.

Methods

An International Electrotechnical Commission (IEC) phantom was established in which the ratio of the activities in the hot sphere was set up and a background of 3.8:1 was scanned and reconstructed using both algorithms. The contrast recovery coefficient was then calculated. The clinical study retrospectively analyzed 35 patients (25 men and 10 women; age range 30–84 years; mean age 63.9 years) with confirmed specific pathological lesions or clinical follow-up; 21 of the patients had 51 malignant lesions and 15 had 23 benign lesions. The maximum standard uptake value (SUVmax) was measured in all lesions using LOR-RAMLA. The maximal counts of all lesions determined manually were divided by the average count of bilateral ventricles and the aortic arch for standardization on fast-RAMLA, and the values were compared with the SUVmax of LORRAMLA. Inter-observer variation in detection was determined among three radiologists who blindly reviewed and scored 70 maximum intensity projection images from 35 patients reconstructed using LORRAMLA and fast-RAMLA.

Results

We identified a quantitative correlation and determined the visual quality of lesion detection between fast-RAMLA and LOR-RAMLA and indicated usefulness and improvement point on fast-RAMLA.

Conclusions

Fast-RAMLA can improve the strategy for using dual time point [18F] fluorodeoxyglucose positron emission tomography ([18F]-FDG-PET) and increase the efficiency of the [18F]-FDG-PET scanner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X, Comtat C, Michel C, Kinahan P, Defrise M, Townsend D. Comparison of 3-D reconstruction with 3D-OSEM and with FORE + OSEM for PET. IEEE Trans Med Imaging 2001;20:804–814.

    Article  PubMed  CAS  Google Scholar 

  2. Comtat C, Kinahan PE, Defrise M, Michel C, Townsend DW. Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 1998;45:1083–1089.

    Article  Google Scholar 

  3. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1: 113–122.

    Article  PubMed  CAS  Google Scholar 

  4. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–316.

    PubMed  CAS  Google Scholar 

  5. Browne JA, De Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans Med Imaging 1996;15:687–699.

    Article  PubMed  CAS  Google Scholar 

  6. Chiang S, Cardi C, Matej S, Zhuang H, Newberg A, Alavi A, et al. Clinical validation of fully-3D versus 2.5-D RAMLA reconstruction on the Philips-ADAC CPET PET scanner. Nucl Med Commun 2004;25:1103–1107.

    Article  PubMed  Google Scholar 

  7. Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans Nucl Sci 2001;48:24–30.

    Article  Google Scholar 

  8. Lartizien C, Kinahan PE, Swensson R, Comtat C, Lin M, Villemagne V, et al. Evaluation image reconstruction methods for tumor detection in 3-dimensional whole-body PET oncology imaging. J Nucl Med 2003;44:276–290.

    PubMed  Google Scholar 

  9. Lartizien C, Kinahan PE, Comtat C. A lesion detection observer study comparing 2-dimensional versus fully 3-dimensional whole-body PET imaging protocols. J Nucl Med 2004;45:714–723.

    PubMed  Google Scholar 

  10. Dan JK. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 2004;49: 4731–4744.

    Article  Google Scholar 

  11. Lahner JL, Lanham KS, Lodge MA, Line BR. Evaluation of a fast reconstruction algorithm for 3D PET [abstract]. J Nucl Med 2005;46:510.

    Google Scholar 

  12. Accorsim R, Adam LE, Werner ME, Karp JS. Implementation of a single scatter simulation algorithm for 3D PET: application to emission and transmission scanning. IEEE Nucl Sci Symp Conf Rec 2002;2:816–820.

    Google Scholar 

  13. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412–1417.

    PubMed  CAS  Google Scholar 

  14. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26:1345–1348.

    Article  PubMed  CAS  Google Scholar 

  15. Mavi A, Urhan M, Yu JQ, Zhuang H, Houseni M, Cermik TF, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 2006;47:1440–1446.

    PubMed  Google Scholar 

  16. Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A. Potential of dual-time-point imaging to improve breast cancer diagnosis with 18F-FDG PET. J Nucl Med 2005; 46:1819–1824.

    PubMed  Google Scholar 

  17. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–875.

    PubMed  Google Scholar 

  18. Lin WY, Tsai SC, Hung GU. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun 2005;26:315–321.

    Article  PubMed  Google Scholar 

  19. Nishiyama Y, Yamamoto Y, Monden T, Sasakawa Y, Tsutsui K, Wakabayashi H, et al. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl Med Commun 2005;26:895–901.

    Article  PubMed  Google Scholar 

  20. Kundel HL, Polansky M. Measurement of observer agreement. Radiology 2003;228:303–308.

    Article  PubMed  Google Scholar 

  21. Schöder H, Yeung HWD. Positron emission imaging of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 2004;3:180–197.

    Article  Google Scholar 

  22. Yeung HWD, Grewal RK, Gonen M, Schöder H, Larson SM. Patterns of 18F-FDG uptake in adipose tissue and muscle: a potential source of false-positive for PET. J Nucl Med 2003;44:1789–1796.

    PubMed  Google Scholar 

  23. Engel H, Steinert H, Buck A, Berthold T, Huch Böni RA, von Schulthess GK. Whole-body PET: physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996;37: 441–446.

    PubMed  CAS  Google Scholar 

  24. Sturkenboom MGG, Franssen EJF, Berkhof J, Hoekstra OS. Physiological uptake of [18F]fluorodeoxyglucose in the neck and upper chest region: are there predictive characteristics? Nucl Med Commun 2004;25:1109–1111.

    Article  PubMed  Google Scholar 

  25. El Fakhri G, Santos PA, Badawi RD, Holdsworth CH, Van Den Abbeele AD, Kijewski MF. Impact of acquisition geometry, image processing, and patient size on lesion detection in whole-body 18F-FDG PET 2007;48:1951–1960.

    Google Scholar 

  26. Kundel HL, Polonsky M. Mixture distribution and receiver operating characteristic analysis of bedside chest imaging using screen-film and computed radiology. Acad Radiol 1997; 4:1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaka Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Cho, K., Fukushima, Y. et al. Validation of fast-RAMLA in clinical PET. Ann Nucl Med 22, 869–876 (2008). https://doi.org/10.1007/s12149-008-0196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-008-0196-2

Keywords

Navigation