Skip to main content

Advertisement

Log in

Mapping mining waste and identification of acid mine drainage within an active mining area through sub-pixel analysis on OLI and Sentinel-2

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The present research focuses on investigating the application of remote sensing for mapping mining waste and identifying areas prone to acid mine drainage within the area of active mining through sub-pixel analysis on Sentinel-2 and OLI sensor of Landsat-8. For this purpose, the Sarcheshmeh mine located in southeast of Iran was investigated. Mine wastes were initially identified using a partial sub-pixel matched filtering algorithm on OLI and Sentinel-2 data images. Areas having potential for AMD were subsequently determined and assessed by comparing field observations and samples analyses including pH of water samples, as well as mineralogical X-ray diffraction analyses, chemical and spectral analyses like visible near-infrared (VNIR) and shortwave infrared (SWIR) spectroscopy, and pH of rock and hardened precipitates samples. Drainage networks were extracted from the digital elevation model (DEM) of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and overlain on the discriminated potential sources of AMD to determine if the hydrologic network intersected the areas of mine waste. Sub-pixel analyses of Sentinal-2 and OLI sensor data indicate that mineral mapping abundance accuracies for potential acid-generating minerals species were determined to be more than 79%. This result suggests that mineral mapping through these sensors is an effective tool for the characterization of mineral species comprising mine waste in areas prone to AMD. Overlaying the results also showed that it is possible to determine the impact of the wastes or polluted AMD on the region and design a plan for managing, controlling, and neutralizing contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig 12

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author, Mahdieh Hossseinjanizadeh, on reasonable request.

References

  • Acharya BS, Kharel G (2020) Acid mine drainage from coal mining in the United States – an overview. J Hydrol 588:125061. https://doi.org/10.1016/j.jhydrol.2020.125061

    Article  Google Scholar 

  • Adiri Z, El Harti A, Jellouli A, Maacha L, Azmi M, Zouhair M, Bachaoui EM (2020) Mineralogical mapping using Landsat-8 OLI, Terra ASTER and Sentinel-2A multispectral data in Sidi Flah-Bouskour inlier. Moroccan Anti-Atlas. J Spatial Sci 65(1):147–171. https://doi.org/10.1080/14498596.2018.1490213

    Article  Google Scholar 

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12):1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006

    Article  Google Scholar 

  • Alexander, S. S., J. Dein, and D.P. Gold, . (1973). The use of ERTs-1 MSS data for mapping strip mines and acid mine drainage symposium on the significant results obtained from the earth resources technology satellite-1, Technical Presentations, Section A, , New Carrollton, Maryland.

  • Babu VS, Seehra MS (1993) Quantification of silica in mine dusts using diffuse reflectance infrared spectroscopy. Appl Spectrosc 47(6):830–833

    Article  Google Scholar 

  • Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715. https://doi.org/10.1016/j.rse.2008.11.007

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60(12):2111–2121. https://doi.org/10.1016/0016-7037(96)00091-9

    Article  Google Scholar 

  • Chen JY, Reed IS (1987) A detection algorithm for optical targets in clutter. IEEE Trans Aerosp Electron Syst AES-23(1):46–59. https://doi.org/10.1109/TAES.1987.313335

    Article  Google Scholar 

  • Chen Q-S (2011) Matched filtering techniques. In: Le Moigne J, Netanyahu NS, Eastman RD (eds) Image registration for remote sensing (pp. 112-130). Cambridge University Press. https://doi.org/10.1017/CBO9780511777684.006

    Chapter  Google Scholar 

  • Claverie M, Ju J, Masek JG, Dungan JL, Vermote EF, Roger J-C, Skakun SV, Justice C (2018) The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens Environ 219:145–161. https://doi.org/10.1016/j.rse.2018.09.002

    Article  Google Scholar 

  • Cloutis EA, Hawthorne FC, Mertzman SA, Krenn K, Craig MA, Marcino D, Methot M, Strong J, Mustard JF, Blaney DL, Bell JF, Vilas F (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184(1):121–157. https://doi.org/10.1016/j.icarus.2006.04.003

    Article  Google Scholar 

  • Crowley JK, Williams DE, Hammarstrom JM, Piatak N, Chou IM, Mars JC (2003) Spectral reflectance properties (0.4-2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochem: Explorat, Environ, Anal 3(3):219–228. https://doi.org/10.1144/1467-7873/03-001

    Article  Google Scholar 

  • DeNicol DM, Stapleton MG (2002) Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. Environ Pollut 119(3):303–315. https://doi.org/10.1016/s0269-7491(02)00106-9

    Article  Google Scholar 

  • Dimitrijevic MD (1973) Geology of Kerman region: Institute for Geological and Mining Exploration and investigation of nuclear and other mineral raw material, Beograd Yugoslavia

  • Djokic D, Ye Z, Dartiguenave C (2011) Arc hydro tools overview, version 2.0. Esri Water Resources Team, Esri, United States of America

  • Evans DM, Zipper CE, Hester ET, Schoenholtz SH (2015) Hydrologic effects of surface coal Mining in Appalachia (U.S.). JAWRA J Am Water Resour Assoc 51(5):1436–1452. https://doi.org/10.1111/1752-1688.12322

    Article  Google Scholar 

  • Farrand WH, Harsanyi JC (1997) Mapping the distribution of mine tailings in the Coeur d'Alene River valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens Environ 59(1):64–76. https://doi.org/10.1016/S0034-4257(96)00080-6

    Article  Google Scholar 

  • Fereydooni H, Moradzadeh A, Pahlavani P, Mojeddifar S (2020) Full unmixing hydrothermal alteration minerals mapping by integration of pattern recognition network and directed matched filtering algorithm. Earth Sci Inf 13(2):417–431. https://doi.org/10.1007/s12145-019-00422-y

    Article  Google Scholar 

  • Ferrier G (1999) Application of imaging spectrometer data in identifying environmental pollution caused by Mining at Rodaquilar Spain. Remote Sensing Environ 68(2):125–137. https://doi.org/10.1016/S0034-4257(98)00105-9

    Article  Google Scholar 

  • Hammarstrom JM, Seal RR, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215(1):407–431. https://doi.org/10.1016/j.chemgeo.2004.06.053

    Article  Google Scholar 

  • Harsanyi JC, Chang C (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 32(4):779–785. https://doi.org/10.1109/36.298007

    Article  Google Scholar 

  • Hosseinjanizadeh M, Honarmand M (2017) A remote sensing-based discrimination of high- and low-potential mineralization for porphyry copper deposits; a case study from Dehaj–Sarduiyeh copper belt, SE Iran. Eur J Remote Sensing 50(1):332–342. https://doi.org/10.1080/22797254.2017.1328646

    Article  Google Scholar 

  • Hosseinjanizadeh M, Tangestani MH, Roldan FV, Yusta I (2014c) Mineral exploration and alteration zone mapping using mixture tuned matched filtering approach on ASTER data at the central part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE J Selected TopicsAppl Earth Observ Remote Sensing 7(1):284–289. https://doi.org/10.1109/JSTARS.2013.2261800

    Article  Google Scholar 

  • Hosseinjanizadeh M, Tangestani MH, Roldan FV, Yusta I (2014b) Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Adv Space Res 53(3):440–451. https://doi.org/10.1016/j.asr.2013.11.029

    Article  Google Scholar 

  • Hosseinjanizadeh M, Tangestani MH, Roldan FV, Yusta I (2014a) Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geol Rev 62:191–198. https://doi.org/10.1016/j.oregeorev.2014.03.013

    Article  Google Scholar 

  • Hunt GR, Salisbury JW, Lenhoff CJ (1973) Visible and near-infrared spectra of minerals and rocks: VII. Acidic igneous rocks. Modern Geol 4:217–224 https://ci.nii.ac.jp/naid/80012965764/en/

    Google Scholar 

  • Hunt GR, Salisbury JW (1970) Visible and near-infrared spectra of minerals and rocks : I silicate minerals. Mod Geol 1:283–300 https://ci.nii.ac.jp/naid/10003792107/en/

    Google Scholar 

  • Hunt GR, Salisbury JW, Lenho CJ (1971) Visible and near-infrared spectra of minerals and rocks: III. Oxides and hydro-oxides. Modern Geol 2:195–205 https://ci.nii.ac.jp/naid/10006460862/en/

    Google Scholar 

  • Imran HM, Hossain A, Islam AKMS, Rahman A, Bhuiyan MAE, Paul S, Alam A (2021) Impact of land cover changes on land surface temperature and human thermal comfort in Dhaka City of Bangladesh. Earth Syst Environ 5(3):667–693. https://doi.org/10.1007/s41748-021-00243-4

    Article  Google Scholar 

  • INC, S. I (2005). Specmin Pro V3.1

  • Jannesar Malakooti S, Shafaei Tonkaboni SZ, Noaparast M, Doulati Ardejani F, Naseh R (2014) Characterisation of the Sarcheshmeh copper mine tailings, Kerman province, southeast of Iran. Environ Earth Sci 71(5):2267–2291. https://doi.org/10.1007/s12665-013-2630-6

    Article  Google Scholar 

  • Khorasanipour M (2015) Environmental mineralogy of cu-porphyry mine tailings, a case study of semi-arid climate conditions, Sarcheshmeh mine, SE Iran. J Geochem Explor 153:40–52. https://doi.org/10.1016/j.gexplo.2015.03.001

    Article  Google Scholar 

  • Khorasanipour M, Eslami A (2014) Hydrogeochemistry and contamination of trace elements in cu-porphyry mine tailings: a case study from the Sarcheshmeh mine, SE Iran. Mine Water Environ 33(4):335–352. https://doi.org/10.1007/s10230-014-0272-x

    Article  Google Scholar 

  • Khorasanipour M, Esmaeilzadeh E (2020) Environmental aspects of cu recovery from evaporative solids on the surface of old weathered tailings: Sarcheshmeh mine, SE Iran. Mine Water Environ:1–15

  • Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2011) Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine SE Iran. Appl Geochem 26(5):714–730. https://doi.org/10.1016/j.apgeochem.2011.01.030

    Article  Google Scholar 

  • Khosravi V, Ardejani FD, Aryafar A, Yousefi S, Karami S (2020) Prediction of copper content in waste dump of Sarcheshmeh copper mine using visible and near-infrared reflectance spectroscopy. Environ Earth Sci 79(7):165

    Article  Google Scholar 

  • Khosravi V, Gholizadeh A, Agyeman PC, Ardejani FD, Yousefi S, Saberioon M (2023) Further to quantification of content, can reflectance spectroscopy determine the speciation of cobalt and nickel on a mine waste dump surface? Sci Total Environ 872:161996

    Article  Google Scholar 

  • Khosravi V, Gholizadeh A, Saberioon M (2022) Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: effect of fusion techniques on model performance. Environ Pollut 310:119828

    Article  Google Scholar 

  • Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W. M., Lowers, H. A., Driscoll, R. L., & Klein, A. J. (2007). USGS spectral library version 7 [report](1035). (data series, issue. U. S. G. Survey. http://pubs.er.usgs.gov/publication/ds1035

  • Kopačková V (2014) Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int J Appl Earth Obs Geoinf 28:28–42. https://doi.org/10.1016/j.jag.2013.10.008

    Article  Google Scholar 

  • Kopačková V (2019) Mapping Acid Mine Drainage (AMD) and Acid Sulfate Soils Using Sentinel-2 Data. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium

  • Lottermoser B (2010) Mine wastes; characterization, Treatment and Environmental Impacts. Springer-Verlag Berlin Heidelberg

  • Manolakis D (2003) Detection algorithms for hyperspectral imaging applications: a signal processing perspective. IEEE Workshop Advan Techniques Anal Remotely Sensed Data 2003

  • Mielke C, Bösche N, Rogass C, Segl K, Gauert C, Kaufmann H (2014) Potential applications of the Sentinel-2 multispectral sensor and the enmap hyperspectral sensor in mineral exploration. EARSeL eProceedings

  • Montero SIC, Brimhall GH, Alpers CN, Swayze GA (2005) Characterization of waste rock associated with acid drainage at the Penn mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping. Chem Geol 215(1-4 SPEC. ISS):453–472. https://doi.org/10.1016/j.chemgeo.2004.06.045

    Article  Google Scholar 

  • Moore F, Rastmanesh F (2006) Application of ASTER data in characterization of environmental pollution in Takab area. NW Iran. Chinese J Geochem 25(1):226–226. https://doi.org/10.1007/BF02840181

    Article  Google Scholar 

  • Murad E, Rojík P (2005) Iron mineralogy of mine-drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin. Czech Republic Clay Minerals 40(4):427–440. https://doi.org/10.1180/0009855054040181

    Article  Google Scholar 

  • Paramanick S, Rajesh VJ, Praveen MN, Sajinkumar KS, Bhattacharya S (2020) Spectral and chemical characterization of Copiapite and Rozenite from Padinjarathara in Wayanad, southern India: possible implications for Mars exploration. Chem Geol 120043. https://doi.org/10.1016/j.chemgeo.2020.120043

  • Parbhakar-Fox A (2016) Geoenvironmental characterisation of heap leach materials at abandoned mines: Croydon au-mines, QLD. Australia. Minerals 6(2):52 https://www.mdpi.com/2075-163X/6/2/52

    Article  Google Scholar 

  • Quental LS, Marsh S, Brito G, Abreu MM (2011) Imaging spectroscopy answers to acid mine drainage detection at S. Domingos, Iberian Pyrite Belt, Portugal. Comunicações Geológicas 98:6171

    Google Scholar 

  • Ranjbar H, Honarmand M, Moezifar Z (2004) Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. J Asian Earth Sci 24(2):237–243. https://doi.org/10.1016/j.jseaes.2003.11.001

    Article  Google Scholar 

  • Riaza A, Buzzi J, García-Meléndez E, Carrère V, Müller A (2011) Monitoring the extent of contamination from acid mine drainage in the Iberian Pyrite Belt (SW Spain) using hyperspectral imagery. Remote Sens 3(10):2166–2186 https://www.mdpi.com/2072-4292/3/10/2166

    Article  Google Scholar 

  • Robbins JEA (1998) Spectral reflectance and detection of iron-oxide precipitates associated with acidic mine drainage. Photogramm Eng Remote Sens 64(12):1201–1208

    Google Scholar 

  • Roohbakhsh P (2013) Investigation of acid mine drainage development using remote sensing in Karmozd mine, Mazandaran province. 8th Conf of the Iranian Assoc of Engineering Geology and the Environment

  • Sánchez España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7):1320–1356. https://doi.org/10.1016/j.apgeochem.2005.01.011

    Article  Google Scholar 

  • Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2016) Detection of acid drainage using Landsat 8 image, Sarcheshmeh and Darrehzar mines, Kerman Province 34th national and the 2nd international geosciences congress, Tehran, Iran

  • Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2019) Identification of acid mine drainage potential using sentinel 2a imagery and field data. Mine Water Environ 38(4):707–717. https://doi.org/10.1007/s10230-019-00632-2

    Article  Google Scholar 

  • Shi X-Z, Aspandiar M, Oldmeadow D (2014) Reflectance spectral characterization and mineralogy of acid sulphate soil in subsurface using hyperspectral data. Int J Sediment Res 29(2):149–158. https://doi.org/10.1016/S1001-6279(14)60031-7

    Article  Google Scholar 

  • SUHET. (2015). SENTINEL-2 user handbook,. Eur Space Agency (ESA), Rev2. V.1. P.64

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167(3921):1121–1123. https://doi.org/10.1126/science.167.3921.1121

    Article  Google Scholar 

  • Skousen JG, Ziemkiewicz PF, McDonald LM (2019) Acid mine drainage formation, control and treatment: approaches and strategies. Extractive Indust Soc 6(1):241–249. https://doi.org/10.1016/j.exis.2018.09.008

    Article  Google Scholar 

  • Song X-P, Huang W, Hansen MC, Potapov P (2021) An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci Remote Sensing 3:100018. https://doi.org/10.1016/j.srs.2021.100018

    Article  Google Scholar 

  • Soucek DJ, Cherry DS, Currie RJ, Latimer HA, Trent GC (2000) Laboratory to field validation in an integrative assessment of an acid mine drainage–impacted watershed. Environ Toxicol Chem 19(4):1036–1043. https://doi.org/10.1002/etc.5620190433

    Article  Google Scholar 

  • Stocker A (1990) Multi-dimensional signal processing for electro-optical target detection. SPIE. 1305. https://doi.org/10.1117/12.2321763

  • Swayze GA, Smith KS, Clark RN, Sutley SJ, Pearson RM, Vance JS, Hageman PL, Briggs PH, Meier AL, Singleton MJ, Roth S (2000) Using imaging spectroscopy to map acidic mine waste. Environ Sci Technol 34(1):47–54. https://doi.org/10.1021/es990046w

    Article  Google Scholar 

  • Van der Werff H, Van der Meer F (2015) Sentinel-2 for mapping iron absorption feature parameters. Remote Sens 7(10):12635–12653 https://www.mdpi.com/2072-4292/7/10/12635

    Article  Google Scholar 

  • Wang Q, Blackburn GA, Onojeghuo AO, Dash J, Zhou L, Zhang Y, Atkinson PM (2017) Fusion of Landsat 8 OLI and Sentinel-2 MSI data. IEEE Trans Geosci Remote Sens 55(7):3885–3899. https://doi.org/10.1109/TGRS.2017.2683444

    Article  Google Scholar 

  • Wei L, Zhang Y, Zhao Z, Zhong X, Liu S, Mao Y, Li J (2018) Analysis of mining waste dump site stability based on multiple remote sensing technologies. Remote Sens 10(12):2025

    Article  Google Scholar 

  • Williams DJ, Bigham JM, Cravotta Iii CA, Traina SJ, Anderson JE, Lyon JG (2002) Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Appl Geochem 17(10):1273–1286. https://doi.org/10.1016/S0883-2927(02)00019-7

    Article  Google Scholar 

  • Yu X, Reed IS, Stocker AD (1993) Comparative performance analysis of adaptive multispectral detectors. IEEE Trans Signal Process 41(8):2639–2656. https://doi.org/10.1109/78.229895

    Article  Google Scholar 

  • Zabcic N (2008) Derivation of surface pH-values based on mineral abundances over pyrite mining areas with airborne hyperspectral data (Hymap) of Sotiel-Migollas mine complex. University of Alberta, Canada]

  • Zabcic N, Rivard B, Ong C, Mueller A (2014) Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings. Int J Appl Earth Obs Geoinf 32:152–162. https://doi.org/10.1016/j.jag.2014.04.008

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Iran national science foundation (INSF), Tehran, Iran, and Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran, for their financial support during this study.

Funding

This research was funded by Iran national science foundation (INSF), Tehran, Iran, (under contract number 96003005) and Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran, under contract number  7/S/96/3162.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mahdieh Hosseinjanizadeh. The first draft of the manuscript was written by Mahdieh Hosseinjanizadeh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahdieh Hosseinjanizadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinjanizadeh, M., Khorasanipour, M. & Honarmand, M. Mapping mining waste and identification of acid mine drainage within an active mining area through sub-pixel analysis on OLI and Sentinel-2. Earth Sci Inform 16, 3449–3467 (2023). https://doi.org/10.1007/s12145-023-01083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01083-8

Keywords

Navigation